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Abstract—To ensure the feasibility of a unit commitment (UC)
schedule under uncertainty, most existing two-stage robust UC
methods formulate their second-stage problems as a multi-period
economic dispatch (ED) problem with dynamic constraints, which
does not properly model real-time ED where dynamic constraints
relevant to the future operation are not certifiable. This paper
proposes a two-stage robust UC method where a UC schedule
and a box in a feasible operation set of each power source as its
new feasible operation set are determined. As the multi-period
ED problem with the refined feasible set at the second stage
has no dynamic constraint, it is identical to a series of single-
period ED problems. By modeling real-time ED as the single-
period ED problems whose solutions depend only on uncertainties
at the corresponding timeslots, the proposed method presents a
practical framework of non-anticipative robust UC. Simulation
results with a 118-bus system demonstrate the performance of
the proposed method.

Index Terms—Cut generation algorithm, multi-period eco-
nomic dispatch, non-anticipativity, robust unit commitment.

I. INTRODUCTION

A. Unit Commitment under Uncertainty

UNIT commitment (UC) is a family of mathematical
optimization problems to determine the operating states

of dispatchable generators (DGs) in a power system, whose
objective is to minimize the total operational cost, i.e., start-
up/shut-down costs plus dispatch costs of the DGs, over a
given planning horizon. As DGs cannot be turned on or off
quickly, a UC problem is formulated and solved in advance,
e.g., one day or a week ahead of the operating day. Thus,
various types of real-time information that cannot be predicted
precisely, such as load, renewable generation, and component
failure, must be modeled properly in a UC problem to ensure
a reasonable degree of power system reliability. With this
background, many UC methods have been proposed in the
literature to deal with uncertainties, most of which include an
economic dispatch (ED) problem for one or more scenarios
to consider the total operational cost according to their own
criteria.
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B. Literature Review

A common technique for UC with uncertainty is two-
stage stochastic programming. In two-stage stochastic UC, a
UC decision is made at the first stage so that the expected
ED cost is minimized at the second stage for a given set
of scenarios with a known probability distribution. Relevant
studies include [1], [2]. In [1], uncertain demand response is
represented as scenarios. In [2], the impact of large-scale wind
integration is studied with wind power production modeled as
scenarios. While many existing algorithms such as Benders
decomposition [3] and its variations can be applied with
good computational performances [4], [5], identifying the
probability distribution of uncertainty is not easy.

Another frequent approach for UC under uncertainty is two-
stage robust optimization, where the uncertainty is assumed to
be in a given set without considering its probability distribu-
tion. In two-stage robust UC, a UC decision is made at the
first stage so that the worst-case ED cost is minimized for
the uncertainty set at the second stage. The relevant recent
studies include [6]–[15]. In [6], the worst-case scenario of
wind power fluctuation with deterministic loads is considered.
In [7], the UC decision considers all possible amounts of future
net injection in a given uncertainty set. In [8], uncertainty of
the price elasticity of demand is considered. In [9], both the
wind power and the price-elastic demand curve are allowed
to vary. In [10], the uncertainties of market price and wind
generation are addressed. In [11], the weighted sum model of
the two-stage stochastic and robust UC methods is presented.
In [12], dispatchable wind power is considered in the weighted
sum model. The two-stage robust UC framework is used to
handle the component failure uncertainty as well. In [13],
a method is proposed to ensure power balance under the
concurrent loss of up to a given number of DGs in a single-bus
power system. Based on this study, both DG and transmission-
line outages in a multi-bus power system are considered in [14]
and a probability distribution of a DG failure is introduced in
[15]. For comprehensive reviews and comparisons of two-stage
stochastic and robust UC frameworks, see [16] and [17].

While considerable advances have been made in the two-
stage UC methods, their main drawback remains that they do
not model real-time ED at each separate timeslot properly. As
the ED problem at the second stage is a multi-period problem
with dynamic or intertemporal constraints such as ramp-rate
limits of DGs over the planning horizon, the ED solution at
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any timeslot in the two-stage UC frameworks is a function of
a time series of the uncertainty over the planning horizon. This
indicates that the past ED solutions as well as the current ED
solution are optimized, which is impractical because the past
ED solutions must be given constants for any type of real-time
ED.

The same issue arises in many reserve-based UC methods,
e.g., [18]–[20], most of which do not explicitly consider the
dynamic constraint of power outputs by DGs, i.e., ramping
limits, after a reserve is activated. Particularly, while it is
possible to change the power output by a DG at a timeslot
as a base-case ED solution by using a spinning reserve, it
is uncertain if an ED solution exists in the feasible range of
power output by the DG at the subsequent timeslot. This is
because the dynamic constraint of the power output of the
DG over the two adjacent timeslots is enforced only for the
base-case ED solution, i.e., in the case where no reserve is
used.

UC methods modeling real-time ED at each timeslot to
overcome this “non-anticipativity” issue in the conventional
UC frameworks include [21]–[25]. In [21], [22], stochastic
programming is used with a scenario tree, where each node
corresponds to real-time ED at each timeslot for each scenario,
ensuring that a real-time ED solution exists for any scenario.
However, the curse of dimensionality regarding the number
of scenarios is yet to be addressed, i.e., the number of
scenarios increases exponentially with that of nodes at each
timeslot. In [23], an interval analysis is adopted to allow for
any load fluctuation over two adjacent timeslots for a box
load uncertainty set. Although not modeling a real-time ED
problem explicitly, this method can ensure system reliability
for any load scenario and its fluctuation. In [24], a real-time
ED solution at each timeslot is modeled as an affine function
of the current and past load uncertainties. The coefficients
and constant term of each function are optimized together
with the UC decision via multi-stage robust optimization.
This technique is extended in [25] with temporal and spatial
dynamics of uncertain wind and solar generation considered.

C. Contribution

This paper proposes a two-stage robust UC method for a DC
power system under load and DG outage uncertainties, which
models real-time ED at any timeslot as a non-anticipative
single-period problem. In the proposed two-stage method, a
UC schedule and a box in a feasible operation set of each DG
are determined at the first stage. Each box is identified with
the upper and lower limits of power output by a corresponding
DG at the timeslots. At the second stage, the boxes form a
new feasible set of the multi-period ED problem, combined
with a part of the original feasible set, where the operations
of the DGs and uncertainties are spatially coupled. Note
that a feasible range of any scalar variable is independent
of the other scalar variables over each box, which indicates
that there is no dynamic constraint. Subsequently, the refined
multi-period ED problem can be identically decomposed as
a series of single-period ED problems where the operations
of the DGs and uncertainties at a single timeslot are coupled

only spatially. Thus, each single-period ED problem can be
regarded as a real-time ED problem at each separate timeslot.
Consequently, as the feasibility of each single-period ED
problem is unaffected by a load realization at another timeslot,
the proposed method can ensure that its UC solution is feasible
for any load realization over the planning horizon, combined
with the refined feasible operation set of each DG. The first-
stage decision variables, i.e., the UC schedule and boxes, are
determined so that the worst-case total operational cost is
minimized over the planning horizon. The load uncertainty
set is modeled as a box, which indicates that the loads are
spatiotemporally independent in terms of their users’ decision-
making regarding how much power to consume. Furthermore,
the contingency criterion for the system to endure the simul-
taneous loss of a given number of DGs is applied. Moreover,
the power output and input operations by energy storage
systems (ESSs) are modeled as well similarly, which are
increasingly integrated to accommodate the variability of a
large penetration of renewable generation efficiently [26].

The proposed method has advantages over the aforemen-
tioned UC methods [1], [2], [4]–[15], [18]–[25] in several
ways; it explicitly addresses the non-anticipativity issue in [1],
[2], [4]–[15], [18]–[20]; it does not suffer from the curse of
dimensionality in [21], [22], as it is a robust-optimization-
based approach and does not specify each scenario; it can
model an ESS, which is not easy in [23] as the dynamic
constraint for the storage capacity of an ESS is effective over
all the timeslots as a whole, not over two adjacent timeslots as
in the case of the ramp-rate limits of DGs; it can incorporate
a contingency criterion for the DG outage, which is not
straightforward in [24], [25] where the ED policy of each
DG is based on a predetermined affine function of net-load
uncertainties.

D. Layout

The remainder of this paper is structured as follows. In
Section II, a deterministic UC problem and a conventional two-
stage robust UC problem are described first, and subsequently,
the novel two-stage robust UC problem is formulated. In
Section III, a cut-generation algorithm for solving the problem
is presented. Numerical experiment results are discussed in
Section IV. Section V concludes the paper.

II. PROBLEM FORMULATION

This section presents a novel two-stage robust UC problem
where real-time ED under load and DG outage uncertainties
is modeled. Before the problem statement, a deterministic UC
problem and a conventional two-stage robust UC problem
only for the load uncertainty are described in the following
two subsections for better understanding of the validity of the
proposed method.

As for the DC power system considered, the bus and
transmission line index sets are denoted by I := {1, . . . , N}
and L, respectively. Without loss of generality, it is assumed
that a DG, ESS, and load, all with the index i, are connected
to bus i for all i ∈ I. While not modeled explicitly, a non-
dispatchable renewable generator can be considered as a load
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with a negative load value. The planning horizon contains T
timeslots with unit length, whose index set is denoted by T .
Any real number with a double subscript it indicates that it is
concerned with bus i and timeslot t.

A. Deterministic UC

A UC decision to minimize the total operational cost for
given loads dit for all i ∈ I and t ∈ T can be made as
a solution of the mixed-integer linear programming (MILP)
problem

min
uit,vit,wit,xit,y

i
it,y

o
it

∑
t∈T

∑
i∈I

(
Cn

i uit + Csu
i vit + Csd

i wit

+ Cg
i xit + C i

iy
i
it + Co

i y
o
it

) (1a)

s.t. vit ≥ uit − ui(t−1), ∀i ∈ I, ∀t ∈ T , (1b)
wit ≥ −uit + ui(t−1), ∀i ∈ I,∀t ∈ T , (1c)
uit − ui(t−1) ≤ uiτ ,

t ≤ τ ≤ min {t− 1 + T u
i , T} , ∀i ∈ I, ∀t ∈ T ,

(1d)

ui(t−1) − uit ≤ 1− uiτ ,

t ≤ τ ≤ min
{
t− 1 + T d

i , T
}
, ∀i ∈ I, ∀t ∈ T ,

(1e)

uit, vit, wit ∈ {0, 1} , ∀i ∈ I, ∀t ∈ T (1f)

Xmin
i uit ≤ xit ≤ Xmax

i uit, ∀i ∈ I, ∀t ∈ T , (1g)

−Xd
i uit −Xsd

i wit ≤ xit − xi(t−1)

≤ Xu
i ui(t−1) +Xsu

i vit, ∀i ∈ I, ∀t ∈ T ,
(1h)

0 ≤ yiit ≤ Y i
i , ∀i ∈ I, ∀t ∈ T , (1i)

0 ≤ yoit ≤ Y o
i , ∀i ∈ I, ∀t ∈ T , (1j)

0 ≤ Si0 +
t∑

τ=1

(
Ei

iy
i
it −

1

Eo
i

yoit

)
≤ Si,

∀i ∈ I,∀t ∈ T ,

(1k)

Fmin
l ≤

∑
i∈I

Fli

(
xit − yiit + yoit − dit

)
≤ Fmax

l ,

∀l ∈ L, ∀t ∈ T ,

(1l)

∑
i∈I

(
xit − yiit + yoit − dit

)
= 0, ∀t ∈ T (1m)

where the binary variables uit, vit, and wit are the indicators
of on/off, start-up, and shut-down states, respectively, of DG
i at timeslot t; xit is the power output by DG i at timeslot
t; yiit and yoit are the power input to and output by ESS i at
timeslot t, respectively.

In the objective function (1a), Cn
i , Csu

i , Csd
i , and Cg

i repre-
sent the no-load, start-up, shut-down, and marginal generation
costs of DG i, respectively; C i

i and Co
i represent the power

input and output costs of ESS i, respectively. The constraints
(1b) and (1c) represent the start-up and shut-down operations,
respectively, of the DGs; (1d) and (1e) describe the minimum
up and down time constraints of the DGs, respectively, with
T u
i and T d

i denoting the minimum up and down times of
DG i, respectively; (1g) represents the generation capacities
of the DGs with Xmin

i and Xmax
i denoting the minimum

and maximum power outputs of DG i, respectively; (1h)
represents the ramp-up and ramp-down constraints of DGs

with Xu
i , Xsu

i , Xd
i , and Xsd

i denoting the ramp-up, start-
up-ramp, ramp-down, and shut-down-ramp limits of DG i,
respectively; (1i) and (1j) represent the feasible power input
and output ranges of the ESS, respectively, with Y i

i and Y o
i

denoting the maximum power input to and output by ESS i,
respectively; (1k) represents the storage capacity constraints of
the ESSs with Si0, Ei

i, E
o
i , and Si denoting the initial stored

energy, input and output efficiencies, and storage capacity
of ESS i, respectively; (1l) represents the transmission line
capacities with Fmin

l , Fmax
l , and Fli denoting the minimum

and maximum real power flows in transmission line l and
DC power transfer distribution factor between bus i and
transmission line l, respectively; (1m) represents the power
supply–demand balance equations.

The problem (1) can be rewritten in a compact form as

min
u∈U,x∈X (u),y∈Y

CT
1 u+ CT

2 x+ CT
3 y

s.t. (x, y) ∈ S (d)
(2)

where u is a vector of the binary variables uit, vit, and
wit for all i ∈ I and t ∈ T ; x is a vector of the real
variables xit; y is a vector of the real variables yiit and
yoit; the vectors C1, C2, and C3 include the cost coefficients
in (1a) of the corresponding variables, representing the total
UC cost, total ED cost incurred by the DGs, total ED cost
incurred by the ESSs, and total penalty, respectively. The
set U := {u : (1b)-(1f)} includes all feasible UC schedules
of the DGs; X (u) := {x : (1g),(1h)} is a set of feasible
operations of the DGs for u; Y := {y : (1i), (1j), (1k)} is a
set of feasible operations of the ESSs; d is a vector of dit and
S (d) := {(x, y) : (1l), (1m)} is a set of feasible ED schedules
in terms of the spatial constraints in the entire system for d.

The solution of (1) does not ensure the system reliability
under load uncertainty because it considers only a single load
scenario d. The conventional two-stage robust UC method for
load uncertainty is described in the following subsection, based
on which the proposed method is formulated.

B. Conventional Two-stage Robust UC

Suppose that the vector d is uncertain while belonging to
a box D :=

{
d : d ≤ d ≤ d

}
where d and d are vectors

of the minimum and maximum load values, respectively.
Subsequently, a two-stage robust UC problem to minimize the
worst-case total operational cost for the load uncertainty set
D is formulated in a conventional way [7] as

min
u∈U

{
CT

1 u+max
d∈D

E1 (u, d)
}

(3)

where E1 (u, d) is the optimal value of the ED problem

min
x∈X (u),y∈Y

CT
2 x+ CT

3 y s.t. (x, y) ∈ S (d) . (4)

The two-stage structure of the problem (3) indicates that
u is determined at the first stage before d is known, and
an ED schedule (x, y) is determined via the problem (4)
at the second stage after d is given. Note that only u is
returned as a solution of (3). Meanwhile, (4) does not model
real-time ED in a proper manner, which is a multi-period
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problem with the dynamic constraints (1h) and (1k) in X (u)
and Y , respectively. Consequently, the actual total operational
cost might be higher than the optimal value of (3), or there
might not be a feasible ED solution at some timeslot, which
undermines the validity of the conventional two-stage robust
UC method. To address this issue, the proposed method
determines additional variables at the first stage and refines
the feasible set of the multi-period ED problem at the second
stage so that it can be regarded as a series of real-time ED
problems that are always feasible regarding the uncertainty.
The details are described in the following subsection.

C. Box-based Decomposition of Multi-period ED

A multi-period ED problem without any dynamic constraint
is identical to a series of single-period ED problems. Accord-
ingly, an ED solution at each timeslot is a function of the
system parameters, including any uncertainty, at the corre-
sponding timeslot. Thus, each single-period ED problem is
a reasonable mathematical model for real-time ED. However,
dynamic constraints are intrinsic to both DGs and ESSs. The
proposed method replaces the original feasible operation set
of each power source by an inner box, which is identified with
refined lower and upper limits of its operation at each timeslot.
As any pair of operations at different timeslots is independent
in the box, the multi-period ED problem can be considered as
a series of real-time ED problems over the new feasible set,
i.e., the boxes combined with the spatial constraints at each
timeslot. A box in the feasible operation set of each power
source can be modeled based on the following proposition.

Proposition 1. Consider a set

C1 := {c ∈ Rn : fp (c) ≤ 0, ∀p ∈ P}

where R denotes the real number set, P is an index set, and
fp : Rn → R for any p ∈ P is a convex function. Then,
a necessary and sufficient condition for a bounded convex
polytope C2 to belong to C1 is

fp (c) ≤ 0, ∀p ∈ P, ∀c ∈ V (C2)

where V (C2) is the set of vertices of C2.

Proof. Noting that any point in a bounded convex polytope can
be represented as a convex combination of its vertices, con-
sider a point c0 =

∑|V(C2)|
q=1 αqcq in C2 where

∑|V(C2)|
q=1 αq = 1,

αq ≥ 0 for any q, and cq denotes the qth vertex of C2. Then,
it holds that

fp (c0) ≤
|V(C2)|∑
q=1

αqfp (cq) ≤ 0, ∀p ∈ P,

which indicates that c0 ∈ C1. Since c0 is arbitrary, the
statement holds. ■

Let xit and xit denote the new lower and upper limits,
respectively, of xit to be determined. According to Proposition

1, a set [X ] (u) of boxes inside X (u) for a given UC decision
u can be represented as

[X ] (u) :=
{
[x] := [x, x] ∈ IRNT :

Xmin
i uit ≤ xit ≤ xit ≤ Xmax

i uit, ∀i ∈ I, ∀t ∈ T , (5a)
xit − xi(t−1) ≤ Xu

i ui(t−1) +Xsu
i vit,

∀i ∈ I,∀t ∈ T ,
(5b)

xi(t−1) − xit ≤ Xd
i uit +Xsd

i wit, ∀i ∈ I, ∀t ∈ T
}
. (5c)

where x and x are vectors of xit and xit, respectively; IR
denotes the set of interval numbers. Similarly, a set [Y] of
boxes in Y can be represented as

[Y] :=
{
[y] :=

[
y, y

]
∈ IR2NT :

0 ≤ yi
it
≤ yiit ≤ Y i

i , ∀i ∈ I,∀t ∈ T , (6a)

0 ≤ yo
it
≤ yoit ≤ Y o

i , ∀i ∈ I, ∀t ∈ T , (6b)

0 ≤ Si0 +

t∑
τ=1

(
Ei

iy
i
iτ

− 1

Eo
i

yoiτ

)
, ∀i ∈ I, ∀t ∈ T , (6c)

Si0 +
t∑

τ=1

(
Ei

iy
i
iτ − 1

Eo
i

yo
iτ

)
≤ Si,∀i ∈ I,∀t ∈ T

}
(6d)

where y is a vector of new lower limits yi
it

and yo
it

of yiit and
yoit, respectively; y is a vector of new upper limits yiit and yoit
of yiit and yoit, respectively.

Suppose any u ∈ U , [x] ∈ [X ] (u), and [y] ∈ [Y] are given.
Subsequently, a multi-period ED problem over the boxes for
any d ∈ D is written as

min
x∈[x],y∈[y]

CT
2 x+ CT

3 y s.t. (x, y) ∈ S (d) , (7)

which is free of dynamic constraints. Thus, if d is uncertain in
D, the optimal value of any variable with the timeslot index
t is a function of dit for all i ∈ I. This indicates that the
ED solution with the timeslot index t of the problem (7) for
any d ∈ D is guaranteed to be implementable at timeslot
t, which is not the case with (4) where the ED decisions
over the planning horizon are co-optimized. Based on the
temporal decomposability of (7), a novel two-stage robust UC
problem that further incorporates the contingency criterion is
formulated in the following subsection.

D. Problem Statement
The objective of this study is to find such boxes [x] and

[y] as new feasible operation sets of the power sources that
minimize the worst-case total operational cost for the load
uncertainty set D with the contingency criterion allowing for
up to κ DGs out of order. Note that the boxes [x] and [y] are
identified with the refined maximum and minimum values of
the operations of the power sources, i.e., x, y, x, and y. Thus,
the boxes can be obtained by solving the problem

min
u∈U,x̂∈X̂ (u),ŷ∈Ŷ

{
CT

1 u+ max
d∈D,h∈H

E2 (x̂, ŷ, d, h)
}

(8)

where

X̂ (u) :=

{
x̂ :=

(
x
x

)
∈ R2NT : ∃ [x, x] ∈ [X ] (u)

}
,

Ŷ :=

{
ŷ :=

(
y
y

)
∈ R2NT : ∃

[
y, y

]
∈ [Y]

}
,
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and

H :=

{
h ∈ {0, 1}N :

∑
i∈I

hi ≥ N − κ

}
with h denoting a vector of the binary variables hi for all i ∈ I
each of which equals zero, if DG i unexpectedly shuts down,
and one, otherwise. The objective function E2 (x̂, ŷ, d, h) of
the inner maximization problem is the optimal value of the
problem

min
x∈[x]c(x̂,h),y∈[y]

CT
2 x+ CT

3 y s.t. (x, y) ∈ S (d) (9)

where

[x]
c
(x̂, h) := {x : xithi ≤ xit ≤ xithi, ∀i ∈ I,∀t ∈ T }

denotes the feasible operation set of the DGs for x̂ and h. In
this study, the problem (9) is assumed to be feasible for any
u ∈ U , x̂ ∈ X̂ (u), ŷ ∈ Ŷ , d ∈ D, and h ∈ H, which can
be enforced by introducing penalty terms for any violation of
the constraints. An algorithm for solving the problem (8) is
described in the following section.

Notably, the load uncertainty set can be modeled as a gen-
eral convex polytope representing a spatiotemporal correlation
of the loads. In this case, however, only a local optimum is
guaranteed by the proposed method. To avoid this optimality
issue, which remains in the conventional two-stage robust UC
method [7] as well, the load uncertainty set is modeled as a
box. Further details are explained in the following section and
APPENDIX.

III. SOLUTION METHOD

The problem (8) can be solved via Benders decomposition
[3], where the original problem is decomposed into two
problems that are iteratively solved. In Benders decomposition,
the second-stage linear programming (LP) problem (9) is
rephrased in its Lagrangian dual form. First, let (9) be rewritten
as

min
x≥0

CTx s.t. Ax ≤ a (x̂, h) , (10a)

Bx ≤ b (ŷ) , (10b)
Dx ≤ Ed+ e (10c)

where x is a vector concatenating x and y; C is a vector
concatenating C2 and C3. The constraints (10a) correspond
to x ∈ [x]

c
(x̂, h); (10b) represents y ∈ ŷ; (10b) represents

(x, y) ∈ S (d). Thus, the dual form of (9) is written as

max
ξ∈Ξ

CT
4 (x̂, ŷ, d, h) ξ

where

C4 (x̂, ŷ, d, h) := −

a (x̂, h)
b (ŷ)

Ed+ e


and

Ξ :=


ξ1

ξ2

ξ3

 ≥ 0 :

A
B
D

T ξ1

ξ2

ξ3

+ C ≥ 0



with ξ1, ξ2, and ξ3 denoting vectors of the dual variables
associated with (10a), (10b), and (10c), respectively. Thus, (8)
is rewritten as

min
u∈U,x̂∈X̂ (u),

ŷ∈Ŷ

{
CT

1 u+ max
d∈D,h∈H,ξ∈Ξ

CT
4 (x̂, ŷ, d, h) ξ

}
. (11)

The inner maximization problem

max
d∈D,h∈H,ξ∈Ξ

CT
4 (x̂, ŷ, d, h) ξ (12)

is a mixed-integer non-linear optimization problem for any x̂
and ŷ. Nevertheless, for any fixed h, the problem (12) is an
LP problem with regard to d ∈ D for any fixed ξ ∈ Ξ and vice
versa. Thus, at least one pair of vertices of D and Ξ forms a
solution of (12) combined with some h and (12) is rewritten
as

max
s∈{0,1}NT ,h∈H,ξ∈Ξ

CT
4

(
x̂, ŷ, d+ s ◦ d̂, h

)
ξ

where d̂ := d − d and ◦ denotes the element-wise product
of two vectors; each entry in the binary vector s being equal
to one and zero indicates that the corresponding entry in d
is equal to its maximum and minimum values, respectively.
Subsequently, with an additional variable η, the problem (11)
can be represented in a standard form of a minimization
problem with a finite number of constraints as

min
u∈U,x̂∈X̂ (u),ŷ∈Ŷ,η

CT
1 u+ η (13a)

s.t. η ≥ CT
4

(
x̂, ŷ, d+ s ◦ d̂, h

)
ξ,

∀s ∈ {0, 1}NT
,∀h ∈ H, ∀ξ ∈ V (Ξ)

(13b)

where V (Ξ) represents the extreme point set of Ξ. While finite,
the number of constraints (13b) is possibly large. Benders
decomposition for solving the large-scale problem (13) is
described as follows.

For initialization, select some u0 ∈ U , x̂0 ∈ X̂ (u0),
and ŷ0 ∈ Ŷ as initial guesses for u, x̂, and ŷ, respectively.
Subsequently, solve the problem

max
s∈{0,1}NT ,h∈H,ξ∈Ξ

CT
4

(
x̂0, ŷ0, d+ s ◦ d̂, h

)
ξ

to obtain the maximizers s0, h0, and ξ0. For each iteration
step K ≥ 1, solve the master problem

min
u∈U,x̂∈X̂ (u),ŷ∈Ŷ,η

CT
1 u+ η (14a)

s.t. η ≥ CT
4 (x̂, ŷ, dk, hk) ξk, k = 0, 1, . . . ,K − 1, (14b)

where dk := d + sk ◦ d̂, to obtain the solutions uK , x̂K ,
and ŷK corresponding to u, x̂, and ŷ, respectively. Let LBK

denote the optimal value, which is a lower bound of (13).
Subsequently, solve the subproblem

max
s∈{0,1}NT ,h∈H,ξ∈Ξ

CT
4

(
x̂K , ŷK , d+ s ◦ d̂, h

)
ξ (15)

to obtain the solutions sK , hK , and ξK . Let

UBK := CT
1 u+ CT

4 (x̂K , ŷK , dK , hK)
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denote the optimal value, which is an upper bound of (13). If

UBK − LBK < ε,

where ε > 0 is a convergence tolerance, the iteration stops and
uK , x̂K , and ŷK are returned as a solution of (8); otherwise,
K increases to K + 1 and the problems (14) and (15) are
solved again. Note that this method yields the solution in a
finite number of iterations because (13) has a finite number of
constraints.

Meanwhile, solving (15), which is a mixed-integer program-
ming problem with the bilinear terms of h and ξ1, and of
s and ξ3, is not straightforward. In this study, each bilinear
term is equivalently converted to a real variable with additional
constraints [27]. Specifically, a bilinear term hiξ

′ where ξ′ is
an entry of ξ1 is equivalently converted to a real variable ζ ′

constrained by

0 ≤ ζ ′ ≤ Ghi,

ξ′ − (1− hi)G ≤ ζ ′ ≤ ξ′

where G is a large number. Let ζ1 and Z
(
h, ξ1

)
denote a

vector of such additional variables for the bilinear terms re-
garding h and ξ1 and its feasible set, respectively. Furthermore,
let ζ3 and Z

(
s, ξ3

)
denote a vector of additional variables

for the bilinear terms regarding s and ξ3 and its feasible set,
respectively, which can be described similarly. Thus, (15) is
rewritten as the MILP problem

max
s∈{0,1}NT ,h∈H,ξ∈Ξ,

ζ1∈Z(h,ξ1),ζ3∈Z(s,ξ3)

C5

(
x̂K , ŷK , ζ1, ζ3, ξ2, ξ3

)
(16)

where
C5

(
x̂K , ŷK , ζ1, ζ3, ξ2, ξ3

)
:=

− aT (x̂K ,1) ζ − bT (ŷK) ξ2 − (Ed+ e)
T
ξ3 −

(
Ed̂

)T

ζ3

with 1 denoting the N -dimensional vector of ones. Fig. 1
describes Benders decomposition for solving (8).

Note that (12) can be solved via the outer approximation
algorithm [28] at the expense of global optimality when D is
a general convex polytope; see APPENDIX for details. Note
also that the column-constraint generation algorithm [29] can
be used to solve (8) as well, where a cut associated with
primal variables regarding each pair of dK and hK is added
to the master problem instead of the one with the dual optimal
solutions as in (14b). Numerical experiments were conducted
to test the proposed method, where both dual and primal
cuts were added to the master problem as it showed faster
convergences than when either of them was used separately.
The simulation results are discussed in the following section.

IV. NUMERICAL EXPERIMENTS

In this section, the performance of the proposed method is
demonstrated via numerical experiments. In the first subsec-
tion, boxes as new feasible operation sets of the power sources
in a 5-bus system obtained using the proposed method are
illustrated to show that the proposed method is appropriate
in terms of its non-anticipativity under the uncertainties com-
pared with the conventional two-stage robust UC and reserve-
based methods. In the second and third subsections, the

Fig. 1. Benders decomposition for solving the problem (8).

Fig. 2. Modified MATPOWER 5-bus test case.

computational performance and conservatism of the proposed
method are discussed in comparison with those of the con-
ventional two-stage robust UC and deterministic UC methods,
respectively, with a 118-bus system. All the experiments were
run on a computer with an Intel Core i7 processor at 2.6 GHz
using 8 GB of RAM, using MATLAB R2016b with CPLEX
12.6.

A. Illustrative Example

This subsection illustrates the non-anticipativity of the pro-
posed method for the 5-bus system in Fig. 2, which is a
modified version of the MATPOWER 5-bus test case [30].
The system has five DGs denoted by G1, G2, G3, G4, and G5,
whose operational parameters are listed in TABLE I with the
indices omitted. The DGs are initially turned off. The system
also has an ESS denoted by E1, whose operational parameters
are listed in TABLE II. There are two loads denoted by L1

and L2 as well. The uncertainty sets of the loads over a
planning horizon of six timeslots are shown in Fig. 3. As for
the contingency criterion, the system should be reliable not
only in a normal state but under the outage of up to two DGs,
i.e., κ = 2.

For this system, the conventional two-stage robust UC
method [7], the reserve-based method [20] where base-case
generation plan and reserves are co-optimized, and the pro-
posed method were applied. In the reserve-based method,
the base-case load scenario used is shown in Fig. 3; the
maximum up and down spinning reserves of the DGs were
set equal to the ramp up and down limits, respectively; the
corresponding costs were 0.5 times their marginal generation
costs; only a base-case operation was planned for the ESS,
without considering its reserve.

As for a UC decision, the conventional two-stage robust UC
method and the proposed method yielded the same solution
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Fig. 3. Load uncertainty sets, the base-case scenario, and the tested scenarios.

where all the DGs are in operation in all the timeslots. The
proposed method further yielded boxes as new operation sets
of the power sources as shown in Fig. 5; the maximum power
output by E1 was zero, which indicates that E1 does not supply
power in real-time ED. In the UC solution obtained through
the reserve-based method, all except G4 are in operation,
which is turned off in all the timeslots; the optimal base-
case generation plans of the DGs with up and down spinning
reserves are shown in Fig. 4; the optimal base-case power input
and output of E1 were zeros. No violation of power balance or
transmission line constraints was expected in all the methods.

Subsequently, based on the solutions of each method, six
non-anticipative single-period ED problems were solved con-
secutively over the planning horizon for two sets of load and
DG outage scenarios, Case1 and Case2, to test their robustness
under non-anticipativity. In Case1, as a setting of DG outage,
DG1 and DG5 are assumed to fail to start. In Case2, DG2

and DG3 are assumed to fail to start. The load scenarios
used are shown in Fig. 3. Note that the feasible ranges of
variables in each single-period ED problem depend on the
past ED solutions, which are now constant, whereas there is
no dynamic constraint in each problem in that the variables
are of the same timeslot.

For Case1, the single-period ED solution based on the UC

TABLE I
OPERATIONAL PARAMETERS OF DGS

Parameters G1 G2 G3 G4 G5

Cn ($) 0 0 0 0 0
Csu (k$) 14 15 30 40 10
Csd ($) 12 13.5 27 36 9

Cg ($/MWh) 14 15 30 40 10
Xmax (MW) 40 170 520 200 600
Xmin (MW) 0 0 0 0 0

Xu, Xd, Xsu, Xsd (MW/h) 18 76.5 234 90 270
Tu (h) 4 4 4 4 4
Td (h) 3 3 3 3 3

TABLE II
OPERATIONAL PARAMETERS OF E1

Ci ($/MWh) Co ($/MWh) Y i, Y o (MW) S (MWh) S0 (MWh)
4 4.8 6 60 0
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Fig. 4. Generation plans with reserves and single-period ED solutions for
Case2. The generator G4 was turned off intendedly and the base-case power
inputs and outputs of E1 were zeros.
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Fig. 5. Boxes as new feasible operation sets and single-period ED solutions
of the power sources in them. The maximum power outputs by E1 were zeros.

schedule obtained using the conventional two-stage robust UC
method, which is shown in Fig. 6, incurred 33.9 MW of power
surplus at timeslot 4. This is because the method models real-
time ED as a multi-period problem. The multi-period ED
solution, where the load scenario over the planning horizon
as a whole is expediently assumed to be available, is shown
in Fig. 6, which did not violate any constraint. The single-
period and multi-period ED solutions of the power sources at
timeslot 4 were the same except for G2. In the single-period
ED solution, the power output by G2 at timeslot 4 cannot be
decreased in contrast to the multi-period ED solution, causing
the power imbalance. This is due to the ramp down limit.
In the multi-period ED solution, the power outputs by G2 at
timeslots 3 and 5 are reduced, thus making it possible for
the power output at timeslot 4 to decrease further; instead,
the other more expensive power sources available, G3 and E1,
were used at timeslots 3 and 5. The single-period ED solution
obtained using the reserve-based method did not violate any
constraint.

For Case2, the single-period ED solution obtained using
the reserve-based method, which is shown in Fig. 4, incurred
18 MW of power shortage at timeslot 4. This is because the
dynamic constraints of the DGs are considered only for the
base-case generation plan and ignored for the reserves. In other
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Fig. 6. Multi-period and single-period ED solutions for Case1 based on the
UC solution by the conventional two-stage robust UC. The power outputs by
G4, which was turned on, were zeros.

words, the scheduled reserve at a timeslot might not be able to
become fully activated owing to the ramp limits regarding the
power output of DGs at the previous timeslot, as in Fig. 4(a).
The single-period ED solution obtained using the conventional
two-stage robust UC method did not violate any constraint.

In contrast, the proposed method did not violate any con-
straint for both scenarios, whose single-period ED solutions
are shown in Fig. 5. This is because non-anticipative single-
period ED is modeled properly in the proposed method in
that the box as a new feasible set of each single-period ED
problem is independent of uncertainties and ED solutions at
other timeslots.

B. Computational performance

In this subsection, the computation times and numbers of it-
erations required by the proposed method and the conventional
two-stage robust UC method are compared for a modified
version of the IEEE 118-bus system [30]. The quadratic terms
of the generation costs of the DGs in the original system were
ignored and 5 ESSs of the same type were added to buses
1, 2, 3, 4, and 6. The maximum power output and input of
each ESS were set to 8.1 MW; the power input and output
efficiencies were set to 0.9 and 0.8, respectively; the storage
capacity and initial stored energy were set to 80.5 MWh and
0 MWh, respectively.

As for the uncertainties, a base-case load scenario over a
planning horizon of 24 timeslots was randomly generated to
model the load uncertainty set, whose sum and peak value
over the planning horizon were 8597.6 MW and 4065.6 MW,
respectively. The maximum and minimum loads at each times-
lot were set to (1±∆) times their base-case values with dif-
ferent values of ∆ = 0, 0.1, 0.2, 0.3, 0.4, 0.5. Simultaneously,
different values of κ = 0, 1, 2 were applied as the contingency
criterion, yielding 17 cases except the one for (∆, κ) = (0, 0)
where there is no uncertainty. The convergence tolerance ε
in Benders decomposition was set to 1.0 × 10−3. The time
limit was set to 2 h and both methods were terminated owing
to timeout when (∆, κ) = (0.4, 2) , (0.5, 2). The computation
times and the numbers of iterations of the proposed method
for the remaining 15 cases are listed in TABLE III, where

the corresponding values obtained using the conventional two-
stage robust UC method are given in parentheses as well.

The proposed method required more computation time for
every case except the one for (∆, κ) = (0.1, 2). The reason
why it requires more computation time than the conventional
two-stage robust UC method is that the number of variables
is always greater, i.e., it determines not only a UC schedule
but also new feasible sets of the power sources. Moreover, a
change in κ had a larger impact on the computation time than
that of ∆ for both methods. This is because different values
of κ yield different cardinalities of H, which is not the case
for ∆ and {0, 1}NT . It can also be observed that, for the same
reason, the number of iterations increased with κ but not with
∆ in both methods.

C. Conservatism

In this subsection, conservatism in the proposed method
is discussed for the same system and parameter settings as
in the previous subsection. With the boxes as new feasible
sets of real-time ED for each case of (∆, κ), 24 single-period
ED problems over the planning horizon were solved for 100
randomly generated sets of load and DG outage scenarios,
except for the case of (∆, κ) = (0, 1) where only 55 scenarios
were used, which is the number of DGs, 54, plus one for the
case where no DG fails to start. When ∆ ≥ 0.1, the load
scenarios were selected among the interior points of the load
uncertainty set, which indicates that all the tested scenarios are
non-worst cases. Subsequently, the deterministic UC method
described in Section II-A was applied to obtain the minimum
total operational costs. The results are shown in TABLE IV.

In each cell, the number in the first row represents the mean
value of the actual operational costs of the proposed method
for the 100 sets of scenarios in each case of (∆, κ). The
number in the second row is the mean value of the minimum
operational costs; the average ratio of the actual cost to the
minimum cost is given in parentheses next to it. The number in
the third row is the worst-case operational cost of the proposed
method; the average ratio of the actual cost to the worst-
case cost is given in parentheses next to it. For reference, the

TABLE III
THE COMPUTATION TIME (s) AND NUMBER OF ITERATIONS

Parameters κ = 0 κ = 1 κ = 2

∆ = 0.0 -
66.183 (43.093) 470.531 (48.082)

3 (3) 8 (8)

∆ = 0.1
41.208 (20.609) 140.772 (47.194) 244.699 (403.773)

2 (2) 5 (5) 6 (6)

∆ = 0.2
40.563 (20.757) 180.120 (47.041) 1250.745 (239.882)

2 (2) 4 (4) 6 (6)

∆ = 0.3
41.543 (21.128) 326.325 (50.233) 2345.753 (1109.202)

2 (2) 7 (7) 7 (7)

∆ = 0.4
42.376 (21.348) 203.185 (50.541)

Timeout
2 (2) 5 (5)

∆ = 0.5
46.867 (21.823) 420.348 (87.478)

Timeout
2 (2) 4 (4)
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results for the case of (∆, κ) = (0, 0) were obtained using the
deterministic UC method and are shown in the table as well.

The average ratio of the actual cost of the proposed method
to the minimum value increased with both ∆ and κ. This
indicates that, the larger ∆ or κ was, the more conservative the
solution of the proposed method was, which makes the real-
time ED solution less optimal, i.e., more expensive. Moreover,
the worst-case cost increased with both ∆ and κ, as can be
expected.

As for the suboptimality of the non-worst-case ED solutions,
notably, a larger uncertainty set does not always lead to a
larger feasible operation set of a power source in the proposed
method. More generally, the shape of a box as a new feasible
operation set is rather arbitrary. For example, in the above
experiment, the feasible generation ranges of the DG at bus
5 at timeslot 7 for the cases of (∆, κ) = (0.1, 0) and of
(∆, κ) = (0.2, 0) were [550, 550] MW, which is a degenerate
interval, and [110, 517.6] MW, respectively; the two intervals
do not show any inclusion relationship. This is because the
proposed method minimizes the worst-case total operational
cost and does not consider the optimality of a non-worst-
case ED solution. In this sense, the suboptimality of a non-
worst-case ED solution can be reduced by expanding the box
inside the original feasible operation set. The box-expanding
method is beyond the scope of this paper and will be reported
separately.

V. CONCLUSION

An approach for non-anticipative two-stage robust UC was
proposed, where a feasible region of a real-time ED problem
at each timeslot is predetermined with a UC schedule. The
bottom line is that a multi-period ED problem, which is nested
in a conventional two-stage robust UC problem, is decomposed
into single-period ED problems, each of which corresponds to

TABLE IV
THE AVERAGE ACTUAL COST (M$), AVERAGE MINIMUM COST (M$),

AND WORST-CASE COST (M$)

Parameters κ = 0 κ = 1 κ = 2

∆ = 0.0

1.7355 1.7395 1.7455
1.7355 (1.0000) 1.7356 (1.0023) 1.7356 (1.0057)
1.7355 (1.0000) 1.7395 (1.0000) 1.7455 (1.0000)

∆ = 0.1

1.7424 1.7431 1.7534
1.7406 (1.0010) 1.7355 (1.0044) 1.7377 (1.0090)
1.9095 (0.9125) 1.9155 (0.9100) 1.9235 (0.9116)

∆ = 0.2

1.7240 1.7466 1.7554
1.7209 (1.0018) 1.7360 (1.0061) 1.7351 (1.0117)
2.0834 (0.8275) 2.0914 (0.8351) 2.1014 (0.8353)

∆ = 0.3

1.7471 1.7627 1.7863
1.7419 (1.0030) 1.7475 (1.0087) 1.7400 (1.0266)
2.2594 (0.7733) 2.2694 (0.7767) 2.3270 (0.7676)

∆ = 0.4

1.7431 1.7593
-1.7351 (1.0046) 1.7364 (1.0132)

2.4353 (0.7158) 2.4515 (0.7176)

∆ = 0.5

1.7389 1.7541
-1.7265 (1.0072) 1.7015 (1.0310)

2.6133 (0.6654) 2.6957 (0.6507)

a real-time ED problem. Future research directions include
the development of convergence acceleration techniques for
the proposed method.

APPENDIX

If D is a general convex polytope, its vertices cannot be
easily identified and the subproblem in Benders decomposition
is not equivalently reformulated as an MILP problem. In this
case, the outer approximation (OA) method [7], [28] can be
applied to convert the bilinear term regarding d and ξ3 to a
real variable θ with iteratively added constraints, each of which
represents its linearization around a transient solution. The OA
method for solving the subproblem is described as follows.

For initialization, select any vertex d0 in D as an initial
guess for d. Subsequently, solve the problem

max
h∈H,ξ∈Ξ,ζ1∈Z(h,ξ1)

CT
6

(
x̂K , ŷK , ζ1, ξ2, ξ3

)
− (Ed0)

T
ξ3

where

C6

(
x̂K , ŷK , ζ1, ξ2, ξ3

)
:=

− aT (x̂K ,1) ζ1 − bT (ŷK) ξ2 − eTξ3

to obtain the solution ξ30 corresponding to ξ3. For each iteration
step J ≥ 1, solve

max
d∈D,h∈H,ξ∈Ξ,ζ1∈Z(h,ξ1),θ

CT
6

(
x̂K , ŷK , ζ1, ξ2, ξ3

)
+ θ

s.t. θ ≤ L
(
dj , ξ

3
j

)
, j = 0, 1, . . . , J − 1

(17)

where L
(
dj , ξ

3
j

)
:= (Edj)

T
ξ3j − (Ed)

T
ξ3j − (Edj)

T
ξ3

is the linearization of the bilinear term − (Ed)
T
ξ3 around

d = dj and ξ3 = ξ3j . Let dJ and UB2
J denote the solution

corresponding to d and the optimal value of the problem (17),
respectively. Subsequently, solve

max
h∈H,ξ∈Ξ,

ζ1∈Z(h,ξ1)

CT
6

(
x̂K , ŷK , ζ1, ξ2, ξ3

)
− (EdJ)

T
ξ3 (18)

to obtain the solutions hJ and ξJ corresponding to h and ξ,
respectively. Let LB2

J denote the optimal value. If UB2
J −

LB2
J < ε2, where ε2 is a convergence tolerance, the iteration

stops and dK , hK , and ξK are set to dJ , hJ , and ξJ ,
respectively; otherwise, J increases to J+1 and the problems
(17) and (18) are solved again.
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