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Abstract—In this paper, we propose a mathematical model In this paper, we restrict the structure of the controller to Pl
for an electromagnet placed inside a molding machine and controllers for industrial applications.
design a PI controller for this system. The eddy currents inside This paper is organized as follows. In section II, we

the electromagnet are a spatially-distributed phenomenon that lain the feat f lect fi Idi hi
is difficult to capture by using finite-dimensional systems. First, explain the eatures of an electromagnetic moiding machine

based on an expression of the system as partial differential @nd the difficulty of the control system design using heuristic
equations, we analyze essential properties of the system. From tuning. Furthermore, we derive the expression of the system
the analysis, we derive a suitable model for a control system as PDEs and analytically characterize the structure of the
design in the frequency domain. Second, we propose a new 100p gysiam in the frequency domain. In section IlI, we derive
shaping technique that utilizes GKYP lemma for this system. the spatially-discretized model and show by ,experiments
|. INTRODUCTION that the model cannot represent suitable properties for the
In molding fabrication, machines which generate mol&ontrol system design using the model of practically low
. ' . : rder. In section IV, we derive new models in the frequency
clamping forces are called molding machines. In the pasg'omain from the expression of the system as PDEs. Then

molding machines driven by oil pressure were dominant. Re- . . ;
we propose a new loop shaping technique to design the

cently, ele_c_trlc moIdmg ma_chlnes_ are widely used to |mpr0vE| control system via GKYP lemma. Finally, we verify the
controllability and cycling time of jobs. Furthermore, electro- lidity of the proposed technigue through experiments on

magnetic molding machines, driven by electromagnets, a\{/é‘ .
. . e actual machine.
currently proposed [1]. In the machines, a suction force gen-
erated by the electromagnets is directly transmitted to a mold Il. ELECTROMAGNETIC MOLDING MACHINE
in contrast to general electric molding machines, in whic
a thrust force generated by a rotary motor is transmitte
through amplification. As a consequence, the electromagneticFig. 1 shows electromagnets placed inside the molding
molding machines are capable of more precise moldingiachine. The electromagnets consist of elactromagnet
fabrication. core and acoil. They generate magnetic flux, shown in
However, it is difficult to realize desired force response§ig. 1, by the current flowing in the coil. Sucking forces are
using heuristic tunings of controllers. The reason is thaienerated by the magnetic flux gapsin the electromagnet
eddy currents are spatially distributed in an iron core ofore. They are transmitted to the mold of the machine.
the electromagnet. This means that the system should belo control the electromagnetic molding machine, the re-
treated as a distributed parameter system [6], [12], [13}ponses of the molding force need to settle in a short time
[15]. Therefore, the system is difficult to model in finitewithout overshoot. Fig. 2 shows a block diagram of the PI
dimensions while keeping suitable properties for contratontrol system. In this figure, the electromagnets, shown in
system design. Fig. 1, are represented by the electro magnet block. The filter,
To model the system, we first execute the spatial digvhich has alow-pass property, expresses a certain time delay
cretization of partial differential equations (PDEs) [10],included in the actual machine (See section IlI-C for detail).
which are derived from basic laws of physics and perfectly Fig. 3 shows experimental results of the step response of
represent the behavior of the system. However, it will beconf®e molding forcé when we vary a proportional gain of the
clear that we cannot design an actual controller by only usirgpntrol system. Generally, the convergent rate to a target
the spatially-discretized models. This is because, they needalue is larger as the proportional gain of PI control systems
high order to represent the suitable properties of the systgfenlarged and when the gain reaches some threshold, the
for the control system design. To derive a suitable modélvershoots of the response will arise. However, in the case
for the design, we examine the essential properties of tif the electromagnetic molding machine, we can see from
physical system by analytically characterizing input-outpufig. 3 that the convergent rate does not increase even if the
properties in the frequency domain. Finally, we design a Rgain is enlarged.
controller for the model by loop shaping via GKYP lemma. From these experiments, we can see that the behavior of
. ) ) ~_ this machine contradicts the intuition of general systems.
Tok%adlfr?;‘;tutf chool Tgéhngqg(g;?at'g?lz_fc'eRAC:gurgndWa'rzdnyg'”%wc?Therefore, it can be anticipated that the performance of the

{ishizaki,kashima,imura l@cyb.mei.titech.ac.jp machine will be hard to improve with the traditional tuning
*Sumitomo Heavy Industries, Ltd; 19, Natushima, Yokosuka city, Kana-
gawa{Ats _Katoh,hrh _morita }@shi.co.jp 1in this paper, the sampling times of the experiment were set at 1.5kHz.

. Tuning of PI control system
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techniques of controllers [2]. To design the control system “core
systematically, we first derive the mathematical expression

of the system.

B. System expression as partial differential equations Fig. 4. Model of electromagnet

The physical system is supposed to be axisymmetric as
shown in Fig. 4, in whichr, B(t,r) andi.(t) denote | 41ore
the spatial variable for the radial direction, the density of
the magnetic flux and the current in the coil, respectively. = (=)™ z\ 2m+k
Because of the symmetry, it suffices to model the system only I (2) = Z m (5) ®3)
for the radial direction. Here, we define the state variable m=0
and the input of the system by (¢,7) := B(t,r) and are Bessel functions.
v (t) =i (t). Furthermore, we define the outplit(t) by Theorem 2:The transfer functiorG. (s) defined by (2)
a suction force generated by the magnetic flux and thegatisfies the following conditions:
linearize the output around an operating po(m,y, T).
Now transforming the spatial coordinate as= /¢ for
convenience, we obtain

0] G (s) is H® function expressed as the ratio of
entire functions.
(i)  The zeros and poles doff (s) are all negative

X (t,§) 9 ( ox (tﬁ)) real numbers. The zeros and poles alternate as we
=2a— t 0,1 )
ot ac‘){ ¢ o0& at £€(01) traverse the real axis frofi to —oo.
$(t,6) = EU (t) at €=1 (i) A high- and low-frequency properties @, (s)
] e} (1) are respectively given by
58X<t’5)_0 t £20
g U es 8
1 G (0) = —
T = [ i ay
0

2
Goo (jw) ~ E’/TC:’ w1
where X (t,€) == x (t.v%), and o, € R are positive gee section III-A for the physical interpretation of Theorems

constants. Therefore, the dynamics of the physical system &&,,4 > (The proofs of these are omitted by the convenience
essentially identical to that of heat diffusion systems with ¢ he wide of the paper.)

diffusivity which is proportional to the spatial variable [12],
[13], [14]. Next, we characterize the input-output properties
of the system in the frequency domain.

Theorem 1:The transfer function of the system expressed

in (1) is given by A. Spatially-discretized model

Goo (5) 1= BN (2v-3) ) By discretizing (1) with respect to the spatial varialgle
T a [~ 0 (25 [10], we obtain a finite-dimensional approximated system

IIl. DERIVATION OF SPATIALLY-DISCRETIZED MODEL
AND CONTROL SYSTEM DESIGN




expressed as Bode Diagram
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Furthermore, we denote the transfer function of this system Boce Diseran
as 10 ,
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This model is physically reasonable since the stability and
the steady-state value of the step response do not vary with
the orderN.

Next, we explain variations of the frequency prop-
erty of the spatially-discretized modély (s) when vary-
ing the order N. Fig. 5 shows the Bode diagrams of
Gn (s) (N =1,10,40,80) and G (s). From this figure,
we can see that the slope of the gain characteristic of
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the high-order model approaches td0 [dB/dec] and the 100 e - e *m;
frequency response @y (s) approaches to that @f ., (s), Freavency (rad/sec)
shown in Theorem 1, for all frequencies.

From this tendency and Theorem 2 (i), we can expect that Fig. 6. Bode diagram of proposed electromagnet

the behavior of7y (s) will come closer to that of the actual

machine by increasing the order 6fy (s). Furthermore, ) o

the fact that the zeros and poles@f, (s) exist alternately, ~ Generally, the slope of the gain characteristic of systems
as shown in Theorem 2 (i), causes the gain to fall off afith relative degree: is —20k [dB/dec] at high-frequency.

10 [dB/dec]. This property is mathematically interpreted™™m this fact, we can anticipate that the property of the
in Theorem 2 (iii). actual machine is hard to even approximately express in

terms of a general lumped parameter system consisting of
B. Comparison with the experimental results on the actuahtional functions. Actually, as shown in Fig. 7, the first order
machine model cannot represent the unigue time response behavior of

In this section, in order to verify the validity of the the actual machine.
spatially-discretized model of first or higher order, we Therefore, we conclude that only the spatially-discretized
compare them with the experimental results on the actullodel of high-order can sufficiently represent the unique
machine [4]. behavior of the actual machine.

Fig.6 shows Bode diagrams of the experimental results and i ,
the models. We can see from this figure that the slope of ttfe P! control system design via GKYP lemma
gain characteristic of the actual machine-i$0 [dB/dec] at In this section, we explain a design technique for the PI
high-frequency. This feature conforms to that of the high-control system, shown in Fig. 2, via GKYP lemma [16]. In
order model as explained in llI-A. Furthermore, Fig. 7 showghe rest of this paper, let the transfer function of the filter in
the step responses of the PI control system, constructedHig.2 be
Fig. 2. We can see from this figure that the behavior of the
high-order spatially-discretized model conforms to that of F(s) = (
the experimental result.

2The mismatch of the phase at high-frequency might be caused fromhIS IS g'ven. by means of |dent|f|cat|or_1 experiments of the
certain elements of the time delay included in the actual machine. actual machine. Furthermore, we define the Pl controller

1
1+7s

2
) , 7 =3.00 x 107%. (10)
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K (s) and the open-loop transfer functiab,, (s) of the
system by Fig. 8. Nyquist plot of the loop transfer functions
k
K(s) = kp+;1 (11)
Lo (s) = F(s)Goo(s)K (5). (12) In this optimization problem, we minimize: under the

constraints of the half plane for the loop transfer function

The constants in (5) are given by=1.2352, 5=1.1621x P, (s) in the frequency rang€;. The restriction boundaries
10 to fit the properties of the actual machine. are straight lines, which are defined by the parameters

In this paper, we design a control system based on fréa;, b;,¢;) (¢ =1,2,3). To put it concretely, the first and
guency shaping of the open-loop transfer function. From thgecond restrictions guarantee some gains in the low- and
above discussion, we can expect to design a desired competiddle-frequency range and the third restriction maximizes
sator by shapind.., directly. However, there is no method the stability margin by minimizing:.. Then, we search fdtp
to directly design an applicable compensator for distributedndk; such thatZ; (s) satisfies these conditions. As a result,
parameter systems [8], [9]. Therefore, we consider designimge obtainedkp = 0.0972, k; = 3.0121 andx = 0.3283.
a compensator indirectly by applying GKYP lemma to our Fig. 8 shows Nyquist plots of.;; 55y (s) and L (s)
finite-dimensional approximated system. when using the controller obtained hérin this figure,: and
« denote the rangeQ, and (23, respectively. Looking at the
Nyquist plots ofLy; 5 33 (s), drawn by a solid line, we seem
to guarantee the sufficiently large stability margin. However,

Problem:  Suppose that rational functions with complex
coefficient P; (s), Q; c R, and(a;,b;,c;) € R3 for i =

}5’_2(’8')'('];:161]:/2;\/8?':FTdQaf"? (;?Zl;i;?; which L (s) := according to the Nyquist plot of ., (s), drawn by a broken
! ’ B line, we can see that the stability margin of the closed-loop
a;Re [L; (jw)] + biIm [L; (jw)] < ¢, w € Q; (13) system decreases. The reason for making the stability margin
smaller is thatd; (s) cannot represent the frequency property
for all 4. of the system around the cut-off frequency of the filter, which

By applying GKYP lemma, this problem can be converteds about 3000 [rad/sec]. That is to say, low-order models
to LMIs, which we can efficiently solve by numerical com-cannot sufficiently represent the frequency property around
putation. This is because, the structure of the controller &€ cut-off frequency. From Fig. 5, we need to increase the
restricted to Pl controllers [16], [17]. The physical inter-order larger than about 80 in order to represent the frequency
pretation of each sets and the parameters in this proble?fePerty ofGos (s) around the cut-off frequency. However,

and relation to the actual design problem are explainéf€ cannot solve the optimization problem for the 80th order
throughout discussion in the next sections. model due to numerical problems caused by the considerable

computational loads for solving LMls.

D. Loop shaping by using the spatially-discretized model
IV. DERIVATION OF NEW MODELS IN THE FREQUENCY

Intuitively, we can expect to design a desired PI controller DOMAIN AND CONTROL SYSTEM DESIGN

by using Gy (s) for a sufficiently largeN. Here, we take ] _ ) )

N = 5 and then search fdtp and k; so as to minimizes A. Loop shaplng by using the analytical expression of the
under the constraints, transfer function

- ) In this section, we propose a new loop shaping technique
Pi(s):=F(s)Gs(s), 1=1,2,3 by using the high-frequency property of the system. In this
0 =[1,5], (a1,b1,¢1) = (10,-1,0) technique, we execute the loop shaping for new models

{2 = [500,1100], (az, bz, ¢2) =(0,1,-2) 3In the rest of papetl; (s), Lz (s) and L3 (s) are collectively denoted
Q3 = [2000,8000], (as,bs,c3) =(—1.5,1,K). by L{1,2,3} (s), for example.
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which are restricted to a given frequency range, taken into 60

special consideration in the loop shaping. Note that, when
applying GKYP lemma, the general optimization problems
are solved by imposing some restrictions onghmerational
transfer functions withreal coefficients, as similarly shown
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Hence, we can consider solving optimization problems by
imposing some restrictions in each frequency range on
differentrational transfer functions witbomplexcoefficients. Fig. 9. Approximation via Taylor expansion

It is important that the model suitably represents the
properties of the high-frequency range, which correspond tc
the cut-off frequency of the filter, in loop shaping. At the
same time, the high-frequency properties of the system ar
given in Theorem 2 (iii). However, we cannot directly utilize
Theorem 2 (iii) for designing the controller since the high-
frequency properties in Theorem 2 (iii) are not the rational
function.

Here, letf (s;w.,n) be the Taylor expansion of (s) :=
(1+7s)* /s around a complex number = jw. with an
ordern. If w. > 1, we can approximately represent the
high-frequency property by

Imaginary axis

BV 2« 1
a  f(s;we,n) .
Papp (850¢,m) (14) Real axis

a rational transfer function with complex coefficients. Using
this approximation, we can execute loop shaping, restricted
to given high-frequency ranges by directly applying GKYP
lemma. Furthermore, we can expect to reduce some COMplz, ., (s) for the compensator obtained here and these are
tational loads for solving LMIs since the approximation isgrawn by a solid and broken line, respectively. In this figure,
not needed for all frequency ranges. : and« denote the range®, and(2;. From the figure, we can
Fig. 9 shows Bode diagrams o, (s;1000,3),  gee that the maximization of the stability margin is achieved
Papp (5;3000,3) and F'(s) G (s), drawn by a broken, o the system without being too conservative. Also, we do
chain and solid line, respectively. From this figure, we Cafyt need the high-order model, meaning we can execute the

confirm that the system is approximated sufficiently aroung)Op shaping without increasing the computational loads.
the point of expansion. We can see that we can obtain the

models which represent the suitable property for the looB. Consideration of the proposed technique for the actual
shaping evem = 3. In addition, the sizes of the matrix are machine
determined by the truncated ordertherefore we canreduce | this section, we consider the proposed technique for

F(s)Goo (s)  ~

Fig. 10. Nyquist plot of the loop transfer functions

the computational loads for solving LMIs. the actual machine. We minimize with several values of
Next, we minimizer under the constraints thab andkr ., - \yhich expresses the constraint shown by the chain line

satisfy in Fig. 10, under the condition that for the loop transfer

Py (s) := F (s) G5 (s) functions P; (s) (i = 1,2,3) same as in (15)kp and ki

Py (5) i= Papp (511000, 3) satisfy the constraints

P3 (5) := Papp (553000, 3) (15) Q0 =[1,5], (a1,b1,¢1) = (10,—1,0)

O =[1,5], (a1,b1,c1) = (10,-1,0) Q = [100,500], (agz,b2,c2) =(0,1,—7)

QQ = [500, 1100] s (CLQ, bg,Cg) = (0, 1, —2) Qg = [2000, 8000] s (ag, b3,C3) = (—1, 1, H) .

€23 = [2000,8000], (a3, b3, c3) = (=1.5, 1, %). As a result, we obtaineblp =9.6x10~%, k;=7.3x10"! and

As a result, we obtainedp = 0.0499, k; = 4.6150 and ~=4.8x1073 wheny =0.1 andkp=1.9x1073, ki =1.5
k = 0.3486. Fig. 10 shows Nyquist plots of.., (s) and andx=9.6x10"2 when~ = 0.2.
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system as PDEs from the basic laws of physics and then
analytically characterized the properties of the system in
the frequency domain. From the analysis, we made clear
that the essential structure of the system was identical to
that of heat diffusion systems. Also, we derived the new
model, which was suitable to control system design, in
the frequency domain and proposed a new loop shaping
technique via applying GKYP lemma. Consequently, we
theoretically showed the performance limitation, which is
hard to determine by heuristic tuning of the controller.

In addition, the model derived in section IV-A properly
captures the features of the system without increasing the
computational loads. There, we modeled the system suitably
for the control system design by using more than one
model. It indicates that we might suitably be able to model
such distributed parameter systems, which have the diffusion
structure, without using fine spatial discretization. These sys-
tems appear in many domains [12], [13], [14], e.g., chemical
reactions in biology or mathematical finances, therefore our
future work will be to devise applicable modeling techniques
for them.

0'020 0.05 0.1 o1 0.2 o2 0.3 o3 0.4

~ : Performance
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Fig. 12. Trade-off relation between and~

Fig. 11 shows numerical simulations and experimental®!
results for the obtained controllers. We can see from thigy,
figure that both numerical simulations and the experimental
results converge to the target value and also that the cor
vergence rate improves as the valueyas larger. However,
discrepancies of the system behaviors between the numeric@l
simulation and the experimental result became larger annE;]]
with enlarging~. Furthermore, we could not execute the
experiment overy = 0.3 due to an oscillation of the actual [g]
machine. The reason why the oscillation occurs can be
explained by the effect of uncertain elements, which wergg
not considered in the modeling, causing a lack of robustness
caused by too high gain. (10]

In addition, we can see from Fig. 12 that a trade-off;y
relation exists between and«, i.e., guarantee of the gain
in middle-frequency range and the robustness of the clos€d!
system. That is to say, we cannot improve the convergengg
rate without losing some of the stability margin. At the same
time, we confirmed the fact from the experiment that thé&4!
numerical simulations conformed to the experimental resultgs)
if x is obtained below aboud.01. Consequently, we can
conclude that it is difficult to suppress the overshoot whil

. . 16]
keeping the convergence rate equal to that of Fig. 11 by tun-
ings of the PI controller. In other words, we can theoretically
show the performance limitation of the PI controller for thel’]
system by the proposed technique.

V. CONCLUSION

Spatially-distributed phenomena are important to indus-
trial applications, while mathematical treatment of them are
complex. In this paper, we derived an expression of the
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