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Abstract— In this paper, we propose a mathematical model
for an electromagnet placed inside a molding machine and
design a PI controller for this system. The eddy currents inside
the electromagnet are a spatially-distributed phenomenon that
is difficult to capture by using finite-dimensional systems. First,
based on an expression of the system as partial differential
equations, we analyze essential properties of the system. From
the analysis, we derive a suitable model for a control system
design in the frequency domain. Second, we propose a new loop
shaping technique that utilizes GKYP lemma for this system.

I. I NTRODUCTION

In molding fabrication, machines which generate mold
clamping forces are called molding machines. In the past,
molding machines driven by oil pressure were dominant. Re-
cently, electric molding machines are widely used to improve
controllability and cycling time of jobs. Furthermore, electro-
magnetic molding machines, driven by electromagnets, are
currently proposed [1]. In the machines, a suction force gen-
erated by the electromagnets is directly transmitted to a mold
in contrast to general electric molding machines, in which
a thrust force generated by a rotary motor is transmitted
through amplification. As a consequence, the electromagnetic
molding machines are capable of more precise molding
fabrication.

However, it is difficult to realize desired force responses
using heuristic tunings of controllers. The reason is that
eddy currents are spatially distributed in an iron core of
the electromagnet. This means that the system should be
treated as a distributed parameter system [6], [12], [13],
[15]. Therefore, the system is difficult to model in finite
dimensions while keeping suitable properties for control
system design.

To model the system, we first execute the spatial dis-
cretization of partial differential equations (PDEs) [10],
which are derived from basic laws of physics and perfectly
represent the behavior of the system. However, it will become
clear that we cannot design an actual controller by only using
the spatially-discretized models. This is because, they need a
high order to represent the suitable properties of the system
for the control system design. To derive a suitable model
for the design, we examine the essential properties of the
physical system by analytically characterizing input-output
properties in the frequency domain. Finally, we design a PI
controller for the model by loop shaping via GKYP lemma.
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In this paper, we restrict the structure of the controller to PI
controllers for industrial applications.

This paper is organized as follows. In section II, we
explain the features of an electromagnetic molding machine
and the difficulty of the control system design using heuristic
tuning. Furthermore, we derive the expression of the system
as PDEs and analytically characterize the structure of the
system in the frequency domain. In section III, we derive
the spatially-discretized model and show by experiments
that the model cannot represent suitable properties for the
control system design using the model of practically low
order. In section IV, we derive new models in the frequency
domain from the expression of the system as PDEs. Then,
we propose a new loop shaping technique to design the
PI control system via GKYP lemma. Finally, we verify the
validity of the proposed technique through experiments on
the actual machine.

II. ELECTROMAGNETIC MOLDING MACHINE

A. Tuning of PI control system

Fig. 1 shows electromagnets placed inside the molding
machine. The electromagnets consist of anelectromagnet
core and a coil. They generate magnetic flux, shown in
Fig. 1, by the current flowing in the coil. Sucking forces are
generated by the magnetic flux atgapsin the electromagnet
core. They are transmitted to the mold of the machine.

To control the electromagnetic molding machine, the re-
sponses of the molding force need to settle in a short time
without overshoot. Fig. 2 shows a block diagram of the PI
control system. In this figure, the electromagnets, shown in
Fig. 1, are represented by the electro magnet block. The filter,
which has a low-pass property, expresses a certain time delay
included in the actual machine (See section III-C for detail).

Fig. 3 shows experimental results of the step response of
the molding force1 when we vary a proportional gain of the
control system. Generally, the convergent rate to a target
value is larger as the proportional gain of PI control systems
is enlarged and when the gain reaches some threshold, the
overshoots of the response will arise. However, in the case
of the electromagnetic molding machine, we can see from
Fig. 3 that the convergent rate does not increase even if the
gain is enlarged.

From these experiments, we can see that the behavior of
this machine contradicts the intuition of general systems.
Therefore, it can be anticipated that the performance of the
machine will be hard to improve with the traditional tuning

1In this paper, the sampling times of the experiment were set at 1.5kHz.



Fig. 1. Electromagnet system

Fig. 2. PI control system

techniques of controllers [2]. To design the control system
systematically, we first derive the mathematical expression
of the system.

B. System expression as partial differential equations

The physical system is supposed to be axisymmetric as
shown in Fig. 4, in whichr, B (t, r) and ic (t) denote
the spatial variable for the radial direction, the density of
the magnetic flux and the current in the coil, respectively.
Because of the symmetry, it suffices to model the system only
for the radial direction. Here, we define the state variable
and the input of the system byχ (t, r) := B (t, r) and
υ (t) := ic (t). Furthermore, we define the outputΥ(t) by
a suction force generated by the magnetic flux and then
linearize the output around an operating point

(
υ, χ,Υ

)
.

Now transforming the spatial coordinate asr =
√

ξ for
convenience, we obtain
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where χ̂ (t, ξ) := χ
(
t,
√

ξ
)
, and α, β ∈ R are positive

constants. Therefore, the dynamics of the physical system are
essentially identical to that of heat diffusion systems with a
diffusivity which is proportional to the spatial variable [12],
[13], [14]. Next, we characterize the input-output properties
of the system in the frequency domain.

Theorem 1:The transfer function of the system expressed
in (1) is given by

G∞ (s) :=
β

α
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where

Jk (z) =
∞∑

m=0

(−1)m

m! (m + k)!

(z

2

)2m+k

(3)

are Bessel functions.
Theorem 2:The transfer functionG∞ (s) defined by (2)

satisfies the following conditions:

(i) G∞ (s) is H∞ function expressed as the ratio of
entire functions.

(ii) The zeros and poles ofG∞ (s) are all negative
real numbers. The zeros and poles alternate as we
traverse the real axis from0 to −∞.

(iii) A high- and low-frequency properties ofG∞ (s)
are respectively given by

G∞ (0) =
β

α

G∞ (jω) ∼ β

α

√
2α

jω
, ω � 1.

See section III-A for the physical interpretation of Theorems
1 and 2. (The proofs of these are omitted by the convenience
of the wide of the paper.)

III. D ERIVATION OF SPATIALLY-DISCRETIZED MODEL

AND CONTROL SYSTEM DESIGN

A. Spatially-discretized model

By discretizing (1) with respect to the spatial variableξ
[10], we obtain a finite-dimensional approximated system



expressed as{
ẋ = Ax + Bu
y = Cx

(4)

A := −αND−TRD−1 ∈ RN×N

B := βNrN [1, 0, · · · , 0]T ∈ RN×1 (5)

C :=
1
N

[1 · · · 1] ∈ R1×N ,

whereN denotes the approximated order and

D :=

 1
...

. ..
1 · · · 1

 ∈ RN×N (6)

R := diag {rN , · · · , r1} ∈ RN×N (7)

rn = 2n. (8)

Furthermore, we denote the transfer function of this system
as

GN (s) := C(sI − A)−1B. (9)

This model is physically reasonable since the stability and
the steady-state value of the step response do not vary with
the orderN .

Next, we explain variations of the frequency prop-
erty of the spatially-discretized modelGN (s) when vary-
ing the order N . Fig. 5 shows the Bode diagrams of
GN (s) (N = 1, 10, 40, 80) and G∞ (s). From this figure,
we can see that the slope of the gain characteristic of
the high-order model approaches to−10 [dB/dec] and the
frequency response ofGN (s) approaches to that ofG∞ (s),
shown in Theorem 1, for all frequencies.

From this tendency and Theorem 2 (i), we can expect that
the behavior ofGN (s) will come closer to that of the actual
machine by increasing the order ofGN (s). Furthermore,
the fact that the zeros and poles ofG∞ (s) exist alternately,
as shown in Theorem 2 (ii), causes the gain to fall off at
−10 [dB/dec]. This property is mathematically interpreted
in Theorem 2 (iii).

B. Comparison with the experimental results on the actual
machine

In this section, in order to verify the validity of the
spatially-discretized model of first or higher order, we
compare them with the experimental results on the actual
machine [4].

Fig.6 shows Bode diagrams of the experimental results and
the models. We can see from this figure that the slope of the
gain characteristic of the actual machine is−10 [dB/dec] at
high-frequency2. This feature conforms to that of the high-
order model as explained in III-A. Furthermore, Fig. 7 shows
the step responses of the PI control system, constructed in
Fig. 2. We can see from this figure that the behavior of the
high-order spatially-discretized model conforms to that of
the experimental result.

2The mismatch of the phase at high-frequency might be caused from
certain elements of the time delay included in the actual machine.
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Fig. 6. Bode diagram of proposed electromagnet

Generally, the slope of the gain characteristic of systems
with relative degreek is −20k [dB/dec] at high-frequency.
From this fact, we can anticipate that the property of the
actual machine is hard to even approximately express in
terms of a general lumped parameter system consisting of
rational functions. Actually, as shown in Fig. 7, the first order
model cannot represent the unique time response behavior of
the actual machine.

Therefore, we conclude that only the spatially-discretized
model of high-order can sufficiently represent the unique
behavior of the actual machine.

C. PI control system design via GKYP lemma

In this section, we explain a design technique for the PI
control system, shown in Fig. 2, via GKYP lemma [16]. In
the rest of this paper, let the transfer function of the filter in
Fig.2 be

F (s) =
(

1
1 + τs

)2

, τ = 3.00 × 10−4. (10)

This is given by means of identification experiments of the
actual machine. Furthermore, we define the PI controller
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Fig. 7. Time responses of controlled system

K (s) and the open-loop transfer functionL∞ (s) of the
system by

K (s) := kP +
kI

s
(11)

L∞ (s) := F (s) G∞ (s)K (s) . (12)

The constants in (5) are given byα=1.2352, β =1.1621×
103 to fit the properties of the actual machine.

In this paper, we design a control system based on fre-
quency shaping of the open-loop transfer function. From the
above discussion, we can expect to design a desired compen-
sator by shapingL∞ directly. However, there is no method
to directly design an applicable compensator for distributed
parameter systems [8], [9]. Therefore, we consider designing
a compensator indirectly by applying GKYP lemma to our
finite-dimensional approximated system.

Problem: Suppose that rational functions with complex
coefficient P̃i (s) , Ωi ⊂ R+ and(ai, bi, ci)∈ R3 for i =
1, 2, · · · ,m are given. Find allkP andkI for which Li (s) :=
P̃i (s) (kP + kI/s) , i = 1, 2, · · · , m satisfy

aiRe [Li (jω)] + biIm [Li (jω)] < ci, ω ∈ Ωi (13)

for all i.

By applying GKYP lemma, this problem can be converted
to LMIs, which we can efficiently solve by numerical com-
putation. This is because, the structure of the controller is
restricted to PI controllers [16], [17]. The physical inter-
pretation of each sets and the parameters in this problem
and relation to the actual design problem are explained
throughout discussion in the next sections.

D. Loop shaping by using the spatially-discretized model

Intuitively, we can expect to design a desired PI controller
by usingGN (s) for a sufficiently largeN . Here, we take
N = 5 and then search forkP and kI so as to minimizeκ
under the constraints,

P̃i (s) := F (s) G5 (s) , i = 1, 2, 3
Ω1 = [1, 5] , (a1, b1, c1) = (10,−1, 0)
Ω2 = [500, 1100] , (a2, b2, c2) = (0, 1,−2)
Ω3 = [2000, 8000] , (a3, b3, c3) = (−1.5, 1, κ) .
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Fig. 8. Nyquist plot of the loop transfer functions

In this optimization problem, we minimizeκ under the
constraints of the half plane for the loop transfer function
P̃i (s) in the frequency rangeΩi. The restriction boundaries
are straight lines, which are defined by the parameters
(ai, bi, ci) (i = 1, 2, 3). To put it concretely, the first and
second restrictions guarantee some gains in the low- and
middle-frequency range and the third restriction maximizes
the stability margin by minimizingκ. Then, we search forkP

andkI such thatLi (s) satisfies these conditions. As a result,
we obtainedkP = 0.0972, kI = 3.0121 andκ = 0.3283.

Fig. 8 shows Nyquist plots ofL{1,2,3} (s) and L∞ (s)
when using the controller obtained here3. In this figure,: and
∗ denote the rangesΩ2 andΩ3, respectively. Looking at the
Nyquist plots ofL{1,2,3} (s), drawn by a solid line, we seem
to guarantee the sufficiently large stability margin. However,
according to the Nyquist plot ofL∞ (s), drawn by a broken
line, we can see that the stability margin of the closed-loop
system decreases. The reason for making the stability margin
smaller is thatG5 (s) cannot represent the frequency property
of the system around the cut-off frequency of the filter, which
is about 3000 [rad/sec]. That is to say, low-order models
cannot sufficiently represent the frequency property around
the cut-off frequency. From Fig. 5, we need to increase the
order larger than about 80 in order to represent the frequency
property ofG∞ (s) around the cut-off frequency. However,
we cannot solve the optimization problem for the 80th order
model due to numerical problems caused by the considerable
computational loads for solving LMIs.

IV. D ERIVATION OF NEW MODELS IN THE FREQUENCY

DOMAIN AND CONTROL SYSTEM DESIGN

A. Loop shaping by using the analytical expression of the
transfer function

In this section, we propose a new loop shaping technique
by using the high-frequency property of the system. In this
technique, we execute the loop shaping for new models

3In the rest of paper,L1 (s) , L2 (s) andL3 (s) are collectively denoted
by L{1,2,3} (s), for example.



which are restricted to a given frequency range, taken into
special consideration in the loop shaping. Note that, when
applying GKYP lemma, the general optimization problems
are solved by imposing some restrictions on thesamerational
transfer functions withreal coefficients, as similarly shown
in section III-D. On the other hand, the proposed technique
utilizes the following features of GKYP lemma: in GKYP
lemma

• P̃i need not to equal̃Pj for i 6= j.
• it is applicable even ifP̃i is a rational transfer function

with complex coefficients.
Hence, we can consider solving optimization problems by
imposing some restrictions in each frequency range on
differentrational transfer functions withcomplexcoefficients.

It is important that the model suitably represents the
properties of the high-frequency range, which correspond to
the cut-off frequency of the filter, in loop shaping. At the
same time, the high-frequency properties of the system are
given in Theorem 2 (iii). However, we cannot directly utilize
Theorem 2 (iii) for designing the controller since the high-
frequency properties in Theorem 2 (iii) are not the rational
function.

Here, letf (s; ωc, n) be the Taylor expansion off (s) :=
(1 + τs)2

√
s around a complex numbers = jωc with an

order n. If ωc � 1, we can approximately represent the
high-frequency property by

F (s) G∞ (s) ∼ β
√

2α

α

1
f (s; ωc, n)

=: Papp (s;ωc, n) , (14)

a rational transfer function with complex coefficients. Using
this approximation, we can execute loop shaping, restricted
to given high-frequency ranges by directly applying GKYP
lemma. Furthermore, we can expect to reduce some compu-
tational loads for solving LMIs since the approximation is
not needed for all frequency ranges.

Fig. 9 shows Bode diagrams ofPapp (s; 1000, 3),
Papp (s; 3000, 3) and F (s)G∞ (s), drawn by a broken,
chain and solid line, respectively. From this figure, we can
confirm that the system is approximated sufficiently around
the point of expansion. We can see that we can obtain the
models which represent the suitable property for the loop
shaping evenn = 3. In addition, the sizes of the matrix are
determined by the truncated ordern, therefore we can reduce
the computational loads for solving LMIs.

Next, we minimizeκ under the constraints thatkP andkI

satisfy

P̃1 (s) := F (s) G5 (s)
P̃2 (s) := Papp (s; 1000, 3)
P̃3 (s) := Papp (s; 3000, 3) (15)

Ω1 = [1, 5] , (a1, b1, c1) = (10,−1, 0)
Ω2 = [500, 1100] , (a2, b2, c2) = (0, 1,−2)
Ω3 = [2000, 8000] , (a3, b3, c3) = (−1.5, 1, κ) .

As a result, we obtainedkP = 0.0499, kI = 4.6150 and
κ = 0.3486. Fig. 10 shows Nyquist plots ofL∞ (s) and

Papp (s; 1000, 3)

Papp (s; 3000, 3)
G∞F

Fig. 9. Approximation via Taylor expansion
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Fig. 10. Nyquist plot of the loop transfer functions

L{2,3} (s) for the compensator obtained here and these are
drawn by a solid and broken line, respectively. In this figure,
: and∗ denote the rangesΩ2 andΩ3. From the figure, we can
see that the maximization of the stability margin is achieved
for the system without being too conservative. Also, we do
not need the high-order model, meaning we can execute the
loop shaping without increasing the computational loads.

B. Consideration of the proposed technique for the actual
machine

In this section, we consider the proposed technique for
the actual machine. We minimizeκ with several values of
γ, which expresses the constraint shown by the chain line
in Fig. 10, under the condition that for the loop transfer
functions P̃i (s) (i = 1, 2, 3) same as in (15),kP and kI

satisfy the constraints

Ω1 = [1, 5] , (a1, b1, c1) = (10,−1, 0)
Ω2 = [100, 500] , (a2, b2, c2) = (0, 1,−γ)
Ω3 = [2000, 8000] , (a3, b3, c3) = (−1, 1, κ) .

As a result, we obtainedkP =9.6×10−4, kI =7.3×10−1 and
κ=4.8×10−3 whenγ = 0.1 andkP =1.9×10−3, kI =1.5
andκ=9.6×10−3 whenγ = 0.2.
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Fig. 11. Numerical simulation and Experimental result
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Fig. 12. Trade-off relation betweenκ andγ

Fig. 11 shows numerical simulations and experimental
results for the obtained controllers. We can see from this
figure that both numerical simulations and the experimental
results converge to the target value and also that the con-
vergence rate improves as the value ofγ is larger. However,
discrepancies of the system behaviors between the numerical
simulation and the experimental result became larger along
with enlarging γ. Furthermore, we could not execute the
experiment overγ = 0.3 due to an oscillation of the actual
machine. The reason why the oscillation occurs can be
explained by the effect of uncertain elements, which were
not considered in the modeling, causing a lack of robustness
caused by too high gain.

In addition, we can see from Fig. 12 that a trade-off
relation exists betweenγ and κ, i.e., guarantee of the gain
in middle-frequency range and the robustness of the closed
system. That is to say, we cannot improve the convergence
rate without losing some of the stability margin. At the same
time, we confirmed the fact from the experiment that the
numerical simulations conformed to the experimental results
if κ is obtained below about0.01. Consequently, we can
conclude that it is difficult to suppress the overshoot while
keeping the convergence rate equal to that of Fig. 11 by tun-
ings of the PI controller. In other words, we can theoretically
show the performance limitation of the PI controller for the
system by the proposed technique.

V. CONCLUSION

Spatially-distributed phenomena are important to indus-
trial applications, while mathematical treatment of them are
complex. In this paper, we derived an expression of the

system as PDEs from the basic laws of physics and then
analytically characterized the properties of the system in
the frequency domain. From the analysis, we made clear
that the essential structure of the system was identical to
that of heat diffusion systems. Also, we derived the new
model, which was suitable to control system design, in
the frequency domain and proposed a new loop shaping
technique via applying GKYP lemma. Consequently, we
theoretically showed the performance limitation, which is
hard to determine by heuristic tuning of the controller.

In addition, the model derived in section IV-A properly
captures the features of the system without increasing the
computational loads. There, we modeled the system suitably
for the control system design by using more than one
model. It indicates that we might suitably be able to model
such distributed parameter systems, which have the diffusion
structure, without using fine spatial discretization. These sys-
tems appear in many domains [12], [13], [14], e.g., chemical
reactions in biology or mathematical finances, therefore our
future work will be to devise applicable modeling techniques
for them.
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