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Abstract— This paper proposes a novel type of decentralized transduction among the whole system is decoupled based
observers for a network system, where identical linear subsys- on its fineness. With this, the feedback gain matrix is to
tems are interconnected. For this system, we derive a state-space be block-diagonally structured. Thus, the architecture of the

model with block-triangular structure, in which the dynamics . . .
of the interaction among the subsystems and the dynamics proposed observer is essentially different from that of the

of each subsystem are decoupled. Based on the decoupled€Xisting decentralized/distributed observers.
model, we design a hierarchical decentralized observer, where  The key idea to design such a hierarchical observer

a kind of centralized observer estimates coarse information on is introducing a state-space model with block-triangular
interaction among the subsystems and a decentralized observer

estimates the state of each subsystem. Furthermore, we derive S'Ucture, in which the dynamics of the interaction among
a necessary and sufficient condition of the observability for the subsystems and the dynamics on each subsystem are
the decentralized estimation under applying the hierarchical decoupled. This model is derived from the viewpoints of
decentralized observer. overlapping expansion of the original state-space, as well
as suitable contraction of the expanded state-space. Con-
sequently, this state-space model has generally a different
For large-scale network systems, various methods of digimension from that of the original system, and realizes the
tributed/decentralized control have been intensively devefiecoupling of the dynamics. These features are similar to
oped over the past few decades, in order to overconteose of overlapping models introduced in, e.g., [7], [13],
difficulties in heavy computation costs. One feature of thedd4]. However, the dynamics of subsystems is not completely
methods is that the structure of feedback gain matrices @ecoupled in those models. Furthermore, we analyze the
restricted to reduce the amount of communication. Morebservability of the state-space model under applying the
precisely, the gains of the distributed controllers are strudierarchical decentralized observer. It turns out that our result
tured accordingly to a communication graph, which is ofteis @ more general version of the result in [15], although we
same as the interconnection topology of systems [1], [23a,dop_t§1d|fferent approach to derive a necessary and sufficient
[3]. This structure only allows to feed back the state ofondition for the observability.
a subsystem to the adjacent ones. On the other hand, therhis paper is organized as follows: In Section II-A, we
gains of the decentralized controllers are block-diagonalljescribe network systems to be studied and formulate a
structured [4], [5]. This allows a local feedback, where th@roblem of a hierarchical decentralized observer design.
state of a subsystem is fed back only to itself. Furthermorehen, in Section II-B, we solve the design problem by
as the dual notion, much attention has been also paid @eriving a state-space model with block-triangular structure,
distributed/decentralized observation [6], [7], [8], [9]. Manyand we investigate the observability condition of this model
conventional results such as decentralized Kalman filter hay Section 1I-C. In Section IlI, we verify the effectiveness of
been developed by the 1990s. In addition, the observabilitie proposed observer by a numerical example, and Section
problem for large-scale network systems has been extefv concludes this paper.

sively addressed within a few years [10], [11], [12]. NOTATION: For a vectorv and matrices\/ = {m, ;} and
As one of large-scale network systems, we focus on SY$ | the following notation is used in this paper: '
tems where identical linear subsystems are interconnecte the set of real numbers

In this paper, we propose a sort of decentralized observe the set of complex numbers
for this network system. The proposed observer, which we the unit matrix of the size, x n
call a hierarchical decentralized observer, is composed otéﬁ the k-th column vector ofl,, '
two kinds o_f observers; one is a global observer, Whlch]\’/}@)N the Kronecker product o/ and N,
coarsely estimates interaction among the subsysteaas<e namely {m; ; N}

informatior), and the other is a set of local observers, (M)  the range Zs?aace otr

which exactly estimates the internal state on each subsyste (M)

. . . " : the null space of\/
(fine information. This composition means that the signal ¢, (M) the set{v| Muv = \v,v # 0}

*Graduate School of Information Science and Engineering, A (]V[) the Set{)‘| Mv = Mv,v 7é 0}

Tokyo Institute of Technology; 2-12-1, Meguro ward, Tokyo i ; Ay
ishizaki sakai 1 @cyb.mel titech-ac jp, LetZ be the. set of mtege_rs. The mat[hag(Ml)lez denotes
kashima,imura }@mei.titech.ac.jp the block-diagonal matrix whose block-diagonal elements

are given byM; for i € Z. Furthermore,|Z| denotes the
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cardinality of Z, and ¢ € R™*IZI denotes the matrix Interconnection

whose column vectors are composedefiffor £ € 7 (in {ggp‘;’l:n
some order ofk), i.e., e} = [egl,...,e;;m} e R™»*™ for
I - {kl, ey km} Observed subsystems

T = {i1,is}
Il. HIERARCHICAL DECENTRALIZED OBSERVERDESIGN

A. Problem Formulation

In this paper, we deal with the following coupled linear C%
systems: Suppose that identical subsystems

Graph: T

T; = arx; +bru;, ar € RP*™ by e RP*™ . .
PP ¢ ’ ’ 1 Fig. 1. Linearly Coupled Network System.
' { w; = crxi, ¢y € R™ @ 9 y =oup y
with the stater; € R" fori € {1,..., N} are interconnected

In what follows, we formulate a hierarchical decentralized
(i.e., a kind of distributed) state estimation problem for
N the network system(A,C). Here, the decentralized state
Wi = Z%vk’“’k’ (2)  estimation means that the state is estimated by only
k=1 using the local outpuy’ for eachi € Z. However, such
for which the diagonalizabl€ = {v; ;} € RV*Y represents decentralized estimation is generally difficult because input-
the interconnection structure of the subsystems. Then, laytput information (interaction) among the subsystems (i.e.,

by the linear coupling

organizing the states as= [z],...,2}]" € RV", the state w; in (2)) is unknown.
equation of the above network system is formed into On the other hand, it is observed that the interaction among
&= Az, 2(0) =z 3) _subsyst_ems is relativelgoarser (more contracted) than the
AT Cob RNnXNn interaction among the states on each subsystem. For example,
=Iv@ar+L@brer € ’ ¢; = [1,...,1] in (1) means that the centroid of; is

whereb;c; # 0 is assumed without loss of generality. Inonly involved in the interaction among the subsystems, while
what follows, we callz; in (1) “the internal state on theth ~ €achz; has then-dimensional dynamics interacting vig.
subsystem”. Actually, such a situation appears in, e.g., a kind of biological
Next, in order to formulate a hierarchical decentralizedietworks, where a protein interacts with the others by their
(i.e., a kind of distributed) state estimation problem, weveraged state while each of proteins has some determinate
define two kinds of measured outputs, which we call gynamics [17]. This fact suggests a possibility that the states

global output and docal output. Denote the global output z; are estimated by decoupling intoarse interactioramong
by y“ € RPP¢ and the local output byt € RIZlrz where subsystems described by (2) afige interactionwithin the

T C {1,...,N} represents an index set of the subsystem#dividual subsystems described by (1).
Then, the output equation is defined by In order to realize this decoupling, we consider estimating
e the interaction (2) by using an extra output, which we call the
{ oL ] =Cxz (4) global outputy“. However in general, it is not clear that what

measured outpuy® is desirable for the estimation of the
C = { J‘I\; ? ¢G ] c R(Pra+|ZlpL)xNn interaction. Thus, we first introduce the following state-space
(ez)" @er representation of the system for hierarchical decentralized
where U € RPXN ¢, ¢ RPe*m andc¢;, € Rrexn, The estimation, and then, we discuss how to derive such a

system(A, C) is a generalization of the system dealt with infépresentation.

[15], [16], where the identical SISO subsystem is described Definition 1: Consider the network systef, C) in (3)

by a generalized frequency variable. and (4), and letZ be a given index set. The state-space
In order to explain (4), let us introduce two outputs of theepresentatior{.A,C) of (4, C) is said to be @ierarchical

i-th subsystem denoted tyf = cgr; andyl = cpz;. By  state-space representatioh.4 andC are in the form of

using this, the global outpus© is rewritten by the linear

combination v e { a. 0 } o { » 0 }
=1 a, € anxnz’ B, € ]R|I\n><nz’ = REPPcxn: (5)

where v, € R denotes thek-th column vector ofU. It
may, for example, represent the availapleighted) average and satisfy
output of subsystems. Furthermore, the local outptit is
rewritten byyt = [yX],cz (i.e., the vector composed gf
for i € 7). The interconnection structure of the network Cx(t) = {
system(A, C) is depicted in Fig. 1. (6)



whereX = [T, 2]]T for 2 € R": andz7 € RIZI" obeys

X =Ax, X(0)eX O
o.x 0 e
o {xlxe | iy, | rem) @ gy

for some matrixs, € R?=*Nn, oE v
In this hierarchical state-space representation (hereafter

denoted asHSSrepresentation); represents the state of

interaction among the subsystems, ardepresents the state i} . HD-Observer

to be estimated. Based on thSSrepresentation, we also (Tl"bal(.#

define a hierarchical decentralized observer composed of two ‘

kinds of the observe®, ando;, whereO, estimates from

y“, ando; individually estimates; from y?*: R ] y
Definition 2: Consider theHSS-representatior(.A,C) in o “J T

(5) and (7). LetH andhz = diag(h;):cz be matrices, and Local Observer

{Oi}iGL I= {172}

) L L
0. : 2= (a,— H~v.) 2+ Hy® (8) yl[ yQT

N R Network System S S
{Oi}iel LT = {I|I\ ®ar—hz (I|I\ 02y CL)}'II Interconnection T’ J N

+5.Z+ hzy%.

Fig. 2. Hierarchical State-Space Representation.

Fig. 3. Hierarchical Decentralized Observer.
Then,0(0,,{o0;}ie7) is said to be dierarchical decentral-

ized observeif lim (X' (t) — & (¢)) = 0 for all X(0) €  representation stands for

R(=+ZI7) and X (0) € X, whereX = [T, 27]7. #y ar
This observer can be straightforwardly constructed by{ F=a,z { o } - {

using a,, 8, and v, in (5). Note that in this hierarchical a _ ) I

decentralized observer (hereafter denoted dDeaobserver), g { ylL } = [ cr } { o ] .

the global outputy“ is fed back only to the observe., Y2 cr 2

while the local outputZ of the subsystem$¥; };c7 is fed From these equations, we see that the internal states on

back only to the observefo; };cz. Furthermore, from the subsystems are determined by the individual system
&; = arx; for i = 1,2, and the interaction tern3,z. Thus,
X (t) — X (t) (9) if the statez is estimated by the observer,, eachz; can be
. . estimated in a decentralized manner by each obseyv&his

= exp {(A — diag (H, hz) C) } (X 0) - (O)) is the fundamental architecture of the proposed observer;

] ) see Fig. 3. The architecture is essentially different from that

we can easily prove the following result: of the existing decentralized/distributed observers, where the

Proposition 1: The observer (8) is theiD-observer if and  strycture of feedback gain matrices is restricted [6], [7], [8],
only if both (o, — H~,) and (a; — h;cp,) for all i € Z are [9].

Hurwitz. Remark 1: The dimension is(n, + |Z|n) for the HSS
Proposition 1 shows that all feedback gaifis and i;  representatiorf.A,C) and Nn for the original network sys-
for i € 7 can be independently designed. This furthetem (A4, C). These are different in general. In other words,

indicates that if we once design the global observer, wg4, C) is derived from some contraction of awverlapped
can easily plug-infout the other local observers to estimatgate-space of, instead of the general coordinate transfor-
the state on subsystems. Moreover, the existence of theation of (4, C); see Theorem 1 below for the details.
HD-observer is guaranteed by the observability(of, ~.) L ) , .
and (a, 1), which represent the dynamics of and the B. Derivation of Hierarchical State-Space Representation
subsystem, respectively. Thus, the fundamental problems thain this subsection, we deriveldSS-representatiori.A, C)
we should consider are associated with the network systefd, C'). The following

. the derivation of HSSrepresentatioriA, C) theorem derives thelSS-representation by projectirig and

. ) the subsystem(as,b;,c;) onto a certain observable sub-
» the observability analysis dx, ) and (ar, c.). space. The observability matrix is denoted by
These problems are investigated in Section II-B and II-C .

below. In the rest of this subsection, we give an illustrative

example: O, (A,C) = ¢4
Example: Let Z = {1,2} in (5). Then, the dynamics :

of z € R™ andzz = [2],24]7 € R®" in the HSS CAn1



Theorem 1:Consider the network systeifd, C) in (3)
and (4). Define

v:=rank (I'), p:=rank(O, (as,brer)).

LetN € RN*” agndM e R™"*# be matrices such th&t™N =
II/! MTM == IN and

R(N) =R (IT), R(M) =R (on (a,,b,c,)T) . (10)
If ¥ e RPXN andcg € RP¢*™ in (4) satisfy
R(UT) CR(IT), R(ch) € R (O arbren)), (A1)

then theHSSrepresentatior(.A,C) associated with( A, C)
is given by

a, =1, Qa,+T, Rb,c, € RVHXVE

7. = UN ® cgM € RPPaxvi

12
B = () TN@bye, eRiEmen 42
0, = NT ® MT c RNnxu,u
for (5) and (7), where
I, :=NTI'N e R, a,:=MTa;MeR* (13)

b, :=MTb; € RF™ ¢, :=¢/M € R™H,

Proof: Consider the redundant representatiori4fC)

as
,’I',‘G o A 0 rqg
[i‘L] B {F@Jbﬂi[ IN®CLI:||:1‘L:| (14)

e = 1T area )5 ]

for ¢ (0) =z, (0) = z. Note that
INNT =T, MTa; =a,M", bre;MMT = bye;

follows from the properties of the invariant sub-space. More-

over, from the supposition (11)
UNNT =¥, ccMMT = ¢
holds. Here, taking

z L T_.’EG _ N®M
{CEI]'_L_xL}7L_[ eév@In}

and multiplying (14) byLT from the left, we have

z e 0 z
. = ? 15
{ﬂfz} | B I|I®GIH$I} (13)
v“ ] [ UN®ceM 2
yE | Iiz)®cp xr |’
Finally, by taking X (0) := L[z}(0),2](0)]" the result
follows. n

z. Note that even though the dynamics ofis obtained
by eliminating the unobservable sub-spaceqiof,I") and
(ar,brer), this does not mearfA,C) is observable; see
Section II-C for the observability analysis.

Remark 2: The dimensiorvu of the statez in the HSS
representation(A,C) quickly increases as the rank af
and the dimension of the observable sub-spacg gfb;cy)
become larger. From the model reduction perspective, the use
of lower dimensional approximation of the state-space of
is more desirable instead of tlegactsystem. This topic will
be reported in the future.

C. Observability Criteria for Hierarchical State-Space Rep-
resentation

As shown in Proposition 1, the observability @f,C)
is decoupled into those dfv.,~.) and (as,cr). Therefore,
in the following theorem, we investigate the observability
of («.,7.) because the observability @dt;,cy) is easily
checkable. Here, define

II:={m| 7€ Alay + Nb.c.), A€ A(T',) }
and also define

O :={A| A€ Al,) st. m € Alay + Abscy) }
Ve i={@n| € E\I,),n€ Erla,+ Ab.c.), A € Oy}

for m € 1L

Theorem 2:For ¥ € RP*N andcg € RPe*™ satisfying
(11), consider the systeffav,,~.) in (12). Then,(a.,~.) is
observable if and only if the following conditions hold:
(@) if rank (IN) # v
(@) (T',, ¥N) is observable
(i) if R(ch) #R(c]), (az+Absc., cgM) is observable

forall A € A(T,)

(i)  For all 7 € II such that|©,| > 2

N(UN®@ ceM)NR(V;) = {0}.  (16)

(b) if rank (¥N) = v, condition (ii) holds.

Proof: [Proof of (a)] We can showA(a,) = II and
Ve = €.(a;) for all 7 € II by the relationa, (¢ ® n) =
7 (£ ®n). Thus, (a,,.) is observable if and only if (16)
holds for all € II. By condition (iii), we need to examine
this only for = such that|©,| = 1.

First, supposeR(cl) = R(c]). Then, there existgs
such thatc¢cM = Kc,. Hence, the observability ofa, +
Ab.c,,cgM) is equivalent to that of(a.,c.). Moreover,
(a,c,) is observable by the definition in (13). On the other
hand

72 (£ ®@n) = UNE @ cgMn # 0

holds if and only ifUN¢ # 0 and cgMn # 0. From these

As shown in Theorem 1I', is obtained by projecting observations, (i) and (i) are
I' onto the range space &f', and (a.,b.,c.) is obtained ’ i _
by projecting the subsysteta;, b;,c;) onto the observable ¢ necessary for (16) with arbitrary < 11,
sub-space ofay, bye;). Furthermore, (11) characterizes the  Sufficient for (16) with allr € II such thaf©| = 1.
condition that the global output“ is exploited to estimate This completes the proof.



[Proof of (b)] Let = be a diagonalizing matrix such that output matrices such a¥ and cq, these statements are
I'y==EA, with A, = diag(A(T",)). Then, we have useful. For example, if only condition (i) is not satisfied,
~ we only have to replac@ to makeoverall network system

TaE=1,®a.+ Ay ®bzes observable. In addition, Corollary 1 shows thatdf,b.) is
¥z =72 =YNE® ccM uncontrollable, ther{.,~.) is necessarily unobservable in
this specific case, independently of the choice of the output
matricesV¥ andcg.

[

a, =Z "a,

where = := Z ® I,. By noting rank(¥NZ) = v, the
observability of(«.,~.) is equivalent to that of
I11. NUMERICAL EXAMPLE

S o _ In this section, we validate the proposétD-observer
Hence, condition (ii) is necessary and sufficient by the virtughrough a simple numerical example. Here, the state matrix

(dz,ll, (9 CgM).

of the block-diagonal structure. B Ain(3)is supposed to be given by the subsystemb;, cr)
This theorem shows that the observability (@f.,~.) IS and the network structurg as

reduced to that of the systems of smaller dimension as far as 38 1 1 1 1

|©x| < N. Actually, this relation was true in all examples 0 —-18 2 0 0

we tried. However, we have so far no theoretical result about, _ 0 0 -18 2 0

the bound of©|. The condition (iii) is also easily checkable 0 0 0 -18 2

when the subsystems are SISO: 0 9 0 0 —18

Corollary 1: For ¥ € R”*Y andcg € R'*" satisfying T
(11), consider the systeffav.,~.) in (12) with b, c] € R¥. by=[0 000 1] ,¢=[100 0 0]
Then, (a.,~.) is observable if and only if the following gng

conditions hold: -2 2 0 0
(@) if rank (IN) # v r— 1 -3 2 0
(@) (T',, ¥N) is observable o 1 -3 2
(i) if R(ch) # R(c]), (az+Ab.c., cgM) is observable o 0 1 -1
forall A € A(T',) Furthermore, the output matri¥ in (4) is given byce = ¢;
(i) (a.,b,) is controllable. and
(b) if rank (IN) = v, condition (ii) holds. 10 0 0 0
Proof: [Proof of (a)] Conditions (i) and (ii) are identical V= [ 1 -100 ]’ =10 10 0 0

to conditions(a)-(i) and (ii) in Theorem 2. Therefore, in
what follows, we show the equivalence betwda(iii) in
Theorem 2 and (jii*) in Corollary 1 ifa,,b.,c.) is SISO.

We suppose (iii*). Note thata.,c,) is observable by the
definition in (13). Define polynomialgl(s) := det(sl, —
a.) andn(s) := d(s) - c.(sI, — a,)"'b,. Considering the
feedback system of the scalar gain

with T = {4}. This means that the global outpyf’ is
measured from the first and second subsystems axitland
the local outputyZ is measured from the fourth subsystem
with ¢y, whose internal state is to be estimated. The global
structure of the network systefd, C) is depicted in Fig. 4.
Here, the rank of the observability matr@; (A4, C) is 11.
It should be emphasized that we cannot determine whether
n(s)/d(s) —_ n(s) the state on the fourth subsystem is estimated with usual
L—X-n(s)/d(s) d(s) — In(s)’ centralizedobservers.

We consider deriving thelSS-representatiof4, C) in (5)
and (12) by Theorem 1. Here, the rankIofis » = 3, and
the dimension of the observable sub-spacdf b;cy) is
Ala, +Mib.c.) NA(as + Aabzc;) = {n]| d(7) = n(m) =0}. = 2. Therefore, the dimension of is vu = 6. Then, by
using the projection of

we see that\ (a, + Ab.c.) is identical to the set of roots of
d(s) — An(s). In other words, for\; # A,

Therefore, ifd(s) andn(s) have no common root, or equiva-

lently (a,,b.,c.) is a minimal realization, thef®.| = 1 for —071 —041 —0.29 1 0
all = € II. Hence, we need not examine conditi)-(iii) 071 041 —0.29 0 05
in Theorem 2. N = 0 082 —099 | M=1]0 05

On the other hand, if (ii*) does not hold, there exists 0 0 0.87 8 82

7 such thatd(7) = n(7). This means tha; contains

all eigenvalues ofl’,. Therefore,dim(?R(Vz)) > v. Since  satisfying (10), we have

rank(v,) < v, (16) cannot hold. This completes the proof. 4 173 0
[Proof of (b)] From the same argument as in the proof of r - 0.58 7:'3 33 1.89

(b) in Theorem 2, the result follows. ] v _(') 20 0 é3 _i 67
Corollary 1, which is a generalized result derived in [15] ‘ ’ '

where the case of; = ¢; is considered, gives a simple and

condition when the subsystem is SISO ang € R'*™, -38 2 0

Furthermore, from the point of view of determining the %=~ { 0 0.2 } » b= { ] ye=[10].
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Fig. 4. Global structure of network systed, C).

trajectory ofz |
*** trajectory of £

(1]

0 é é‘l 6 8
[Time]

Fig. 5. Trajectory of states and z.
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(2]

(3]

Clearly, ¥ and ¢¢ satisfy (11) fromeg = ¢;, and ¥ is
linearly dependent on the first row of

Next, we examine the observability ¢f4,C), which is
decoupled into the the observability @f;, cr) and (., .)
in (12). The observability ofa,~.) is verified by Corol-
lary 1. In fact, both(as,cr) and (a.,~,) are observable.
Therefore, there exists some feedback gdinandh, in (8)
such that any convergence rate for the estimation @fR%
andz,4 € R® is achieved.

We design some feedback gaifs and h, for the HD-
observer in (8) by the pole placement viaaM.AB. Here,
Fig. 5 shows the trajectory of € R® (the solid lines)
and the estimatiot € R (the lines of x), and Fig. 6
shows the trajectory of € R?° (the solid lines) and the
estimationz, € R® (the lines of«) under some initial values.
From these figures, we can see thatvhich represents the [10]
interaction of the subsystems, is appropriately estimated, and
the decentralized estimation of the statesXtnis achieved. [11]

(4]
(5]
(6]
(7]
(8]

(9]

IV. CONCLUSION

In this paper, the problem of a hierarchical decentralized?]
observer design for networked systems in which identical
subsystems are linearly coupled under a network, has bepgj
addressed. First, to design the observer, we have derived a
hierarchical model composed of the dynamics on interactiquyu
among the subsystems and the dynamics on subsystems
whose states are to be estimated. Based on the hierarchical
model, the hierarchical decentralized observer, where
observer for the interaction and an observer for each sub-
system are hierarchically interconnected, has been designed.
In addition, the observability condition for realizing the 16l
hierarchical decentralized observer has been derived.
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