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Abstract—In this paper, we propose a model order reduc- stability preservation and provides an explicit error bound
tion method for MIMO linear dynamical networks, where a caused via the model reduction, which can be Computed

large number of subsystems interact according to a network. - ayen for |arge-scale systems by efficient iterative matrix
In this method, a spatially one-dimensional reaction-diffusion .
computations.

structure, which can be efficiently exploited even for large-scale X . o
systems, is fully utilized. We give a simple algorithm as well as ~ The main results of this paper are generalization of the

a computable error bound in terms of the H..-norm. model reduction strategies for SISO systems proposed in [9]
to MIMO systems. It should be emphasized that the quan-
|. INTRODUCTION titative analysis of the reduction error for MIMO systems

Dynamical systems on large-scale/complex network§ even more difficult. Specifically, the analyti_cal results of
whose behaviors are determined by the interaction of a lardfa® H--norm for SISO systems were derived in [9] only by
number of subsystems, have been intensively studied ovdlilizing elementary_ properties of rational transfer funct|on_s.
the past decades. Examples of such dynamical networlcontrast, we derive in this paper more general expression
include World Wide Web, gene regulatory networks, spreafll the Hoc-norm condition for MIMO systems by exploiting
of infection; see [1], [2], [3] for an overview. the bounded real lemma [5]. .

This paper addresses the model reduction problem of ThiS paper is organized as follows. In section Il, we
MIMO linear systems over large-scale networks expressétfscribe a system to be studied here and introduce the
by undirected graphs, whose nodes and edges denote Sﬁg_af:tlon-lefusmn transformation for_ MIMO systems. _In
systems and their interactions, respectively. As one of a%?Ct'o_” Ill, we analyze the properties of the Reaction-
proach to solve the reduction problem, we exploit a networkiffusion realization and apply the properties to a model
structure transformation that we call the Reaction-Diffusiof'der reduction. In Section IV, a numerical example validates
transformation. This transformation gives a kind of spatialljh® Proposed method. Section V concludes this paper.
one-dimensionakeaction-diffusion structure embedded in the NOTATION: For a vectorv and a matrix = {m;;}, we
networks. To execute the Reaction-Diffusion transformatiort/S€ the following notation in this paper:

we use Householder transformation, which is effective for R the set of real numbers

making large-scale (symmetric) matrices to band matriceslr the unit matrix of the size: x n

Thus, the proposed model reduction method is effective forey; the k-th column vector off,,

large-scale linear systems on undirected graphs. ks kg the k;-th to k2-th columns of/,,
Many kinds of model reduction methods of linear and M ® N the Kronecker product o}/ and IV,

nonlinear systems have been developed [4], [5], [6], [7], [8]. namely {mn;; N}

However, matrix factorization methods such as the balanced M || =0max(M)  the maximum singular value af/

truncation require computationally expensive operations,det (M) the determinant of\/

e.g., gramian computations, although the stability/passivityabs (M) the matrix formed by{|m;;|}

property is preserved [4], [5]. Therefore, these methods ale addition, the product of matrices is defined by
in general difficult to apply to large-scale systems. On th@[}_, My := M;M;,---M; and if j < i this is equal to
other hand, Krylov method is also well-known as a mode). Finally, the H..-norm of a rational transfer matri& (s)
reduction method for large-scale systems. However, in this defined by||G (s)|| ., := sSup,cg Tmax (G (jw)).

method, the stability property is not preserved, and a priori
computable error bound caused via model reduction has not
been derived even in linear systems [5], [6]. A. System Description

Most recently, we have proposed in [9] a new model re- | this paper, we deal with linear systems over large-scale
duction method for SISO linear dynamical network SysteMSomplex networks whose general form is given as follows:
by focusing on the reaction-diffusion structure. Even though pefinition 1: The linear system

the method can be applied only for SISO systems, it has the

Il. REACTION-DIFFUSION TRANSFORMATION
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Fig. 2. lllustration ofRD-realization

Theorem 1:Consider the dynamical network4, B) in
(1). There exists a Householder matfifg that makesH g B
an upper triangular matrix with the non-negative diagonal en-
tries. Furthermore, there exists a Householder mafrixthat
makesH 4 Hg AH g H 4 a band matrix with the bandwidth of
(2m + 1) and the non-negative, i+m), (i4+m, 7)-th entries
forall i € {1,---,(n — 1)m}. Then, the unitary matrix

Fig. 1. lllustration of network structure

This is a generalization ofindirected reaction-diffusion
. R H=HA.H 4
systems depicted in Fig. 1: ATB “)

N m is aRD-realization matrix of the dynamical netwofi!, B).
g =—rmi+ Y aij(z;—x)+ Y bigux (2)  Moreover, define
Jj=1,4#1 k=1 . ) £ ne1

wherer; (> 0) denotes the intensity of the reaction (chemical = { ?lrzgﬁe'rf;isg O} if TLiey B: =0, (5)
dissolution) ofz;, anda; ;(> 0), i # j, denotes the intensity ’ '
of the diffusion betweemn:; andz;. This coupled dynamics Then, (en™_)THe"™_ s uniquely determined.
is stable if at least one; is strictly positive and the graph is PrO(l):ﬁ“ See lgﬁapter 5 in [10] for the details of the
connected. See, e.g., [3] for a survey on networked systemg,;seholder transformation. The proof of fRB-realization
and multi-agent systems. ~is similar to that of Theorem 1 in [9]. Furthermore, any non-

Next, we introduce a clase of the state—_space realization Qifngular matrix can be decomposed to the product of an or-
the dynamical network. This representation plays & centrg{ogonal matrix and an upper triangular matrix with positive
role in this paper and is closely related to spatially ONegiagonal terms, namely QR decomposition. By noting the

dimensional reaction-diffusion systems. _ uniqueness of the QR decomposition Bf, the uniqueness
Definition 2: Let (4, B) a dynamical network in (1). of f7 follows form similar argument as in [9]. (The details
Then, unitaryH is said to be aReaction-Diffusion trans- 5re omitted for space.) -
formation matrixif A:= HAHT andB := HB are inthe |, computer science, matrices are often transformed to
form of an easily-handled form via similar transformations. In par-
o B ticular for symmetric matrices, unitary transformations are
1 ax B3 desirable to retain the symmetry. It should be emphasized

that the construction of the Householder matrices does not

A = c RVxN
require computationally expensive operations, such as matrix
A factorizations’. Moreover, construction methods of the band
Bn—1 «n matrix for large matrices have been widely investigated in
T T Nxm the computer science since Householder transformations has
B = [B 0 - 0] €eR 3) . C ) X
various application such as eigenvalue computation [11]. In

with some negative definite matrices € R™*™ for i € this sense, th&®D-transformation can be implemented even
{1,---,n} and some upper triangular matrices with nonfor large-scale systems.
negative diagonal entrigs € R™*™ fori € {0,---,n — 1}.
Moreover, the realization(A,B) is called a Reaction- B. Fundamental Properties of MIMO Reaction-Diffusion Re-
Diffusion realization?. alization

Note that the matrix4 is a band matrix with the bandwidth
of 2m + 1 since ; is an upper triangular andl has a
block tri-diagonal structure witln x m blocks. For theRD-
realization, we denote the state vectdr := Hx € RY
as X := [xf,--- X7, where X; € R™. The internal
strueture represents serially-eascaded autono'mou.s systems Gi(s) = (e @ Im)T (8T — A)’l B. 6)
equipped with the boundary input, as shown in Fig. 2. In
fact, theRD-realization appears when we apply the finite dif-
ference method to (multi-variable) spatially one-dimensional 2, tact, the Householder transformations require ofy3)n3 com-

reaction-diffusion systems with a boundary input. putations for the size of matrices while, e.g., the computation of the
controllability gramians and the eigen-decomposition requide® and
1The term “Reaction-Diffusion” is , as necessary, denoted‘R®-". 30n3 computations. See [11], [5] for details.

In this section, we show &ow-passproperty equipped
with the RD-realization. In the rest of this paper, the transfer
function matrix from the input: € R™ to the stateX; € R™
in the RD-realization is denoted by



Theorem 2:Let (A, B) be aRD-realization in (3). Then,
G (s) in (6) satisfies

HP

PA@F:<“J®I>(ﬂmﬂn—Z»1(“]@])

BJ 1 (7)

wherep,, j :=n—j+1andA; := (e}, @) A}, @)
Moreover

1P ($)lloo = 1P (O)||, Vie€E{L,---,n} (8)
holds.

Proof: [Proof of (7)] Trivially from the definitions of
G; andP;, we haveG; = P; 5y, which implies

= P1 (s) Bou.

SupposeY; = H;Zl P;B;—1u. By regardingX; as an input
to the state equation ot;,;, we have

XiJrl z+1 (HP ﬁ] 1’LL> .

Hence, (7) holds by the induction. Lemma 1 below includes ‘

(8) as a special case. ]
Lemma 1:For any stabled = AT ¢ R™*" and B €
R™*™ with m < n

|BT (sl = 4Bl = [BTA B @
holds.

Proof: Denote asf (s) := BT(sl, — A)~'B. The
condition || f (s)||,, < ~ holds true if and only if the
Hamiltonian

7 B A %BBT
(’Y) - —%BBT _A

has no eigenvalues on the imaginary axis (see [5] for the ‘

details). Here, we have

det (J (7)) = — det (A)* det (

h—éﬂﬁ)

This implies thatJ () has necessarily zero eigenvalues if

~v = ||f (0)]|. Therefore, due to the continuity of (v), the
result follows if the eigenvalues of (v) are real or purely
imaginary. For the symmetric positive definite matgx:=

(1/4)BBT we have
0 1
1 0|

Let a matrixV € R”XT such thgtTQV = V1I,. By noting
that A — S = (A—-5)2 (A—S)2 is negative definite, the
similar transformation of/? (v) by V ® (4 — )2 yields

{v-l ®(A—S)*%}J2 (fy){V@(A—S)%}
—Le{(4-8)7* (42 - 52+ A4S - S4) (A- 5)*}
:12®{(A—S) (A+S)(A78)%}.

J? (7) = Le(A? — $*)+1,®(AS — SA), T

Nl

where Q; (s; k)
semi-negative deflnlteness ®% (0; 1), we have

u |41 |

P21 |

Fig. 3. Block diagram oRD-realization

Since(4 — S)? (A + S) (A — 5)"/% is the Hermitian ma-
trix, having real eigenvalues, the result follows. ]

Fig. 3 depicts the structure of tHeD-realization shown
in Theorem 2.

I1l. APPLICATION TOMODEL ORDER REDUCTION
A. Approximation Error Analysis

In this section, we propose a model reduction method
based on the direct truncation of tiRD-realization. We
simply retain the uppekm states, and analyze a resulting
error bound.

Theorem 3:Consider the transfer function matrix; (s)
in (6) and define thé&m-th order transfer function matrix

G" (s) = (eF @ I,)" (sTym — Ax) ' By (10)
where
A = (elif) T Aet, Bro= (ef,)" B (1D)
Then, for alli € {1,---,n} andk € {1,---,n— 1}
Gi (s) = G (s) (12)
7 k 7
pri1y 30; | [[riet II ptrr] g i<k
< j=1 I1=j I=1,l1#j
[Iridi1, i=k+1
j=1
holds, where
pi =[P (0)[, & =I5l - (13)
In particular, ifm =1
Gi(5) =M ()| _=0.0-6"© @4
holds.
Proof: For an integerk € {1,---,n— 1}, denote

by G (s;7,) the transfer functiong; (s) for which gy
is replaced with7, 8, for 7, € [0,1]. Here, note that
Gi(s;me=1) = Gi(s) and G; (s;7, =0) = QAZ-(]C) (s). For
1> k41, g}(’” (s) = 0 and consequently the desired result
holds from Theorem 2. Thus, in what follows, we assume
7 < k.

Similarly to G; (s; 1), denote byP; (s; 1) the function
P; (s) for which gy is replaced withr, g3, for 7, € [0, 1].
From (7), using the differential formula for a non-singular
matrix, we have

T
k k
=27 (HQ]- (s; Tk))PkH (s; Tk)HQj (s;7k)

Jj=t j=i
(15)
Furthermore, from the

dPl (S; Tk)
di

= B;P;

(85 T)-

[Pi (0; 7 = DIl = [Pi (0; ), V7 € [0,1]. (16)



First, we consider the case ofi = 1. Noting all the Theorem 3 states that for single-input systems, we have the

transfer functions and; are scalars, we assume exact error. Here, (12) seems inconvenient for the calculation
dG; (s;73) dG: (0;7%) due'to its compllcat_e form. The following corollary gives an
(17)  equivalent expression of the error bound (12) as a closed
di di . .
matrix form:
then we have Corollary 1: For the constants
1
5(k) _ dg; (s; i) 1 1
‘gi () =G (S)Hoo_ /0 deTk O = o 0; = *;*Qgﬂiﬂa ie{l,--,n—1}
' dg; (057, i " y
< / 2 P dr, = Gi (057 = 1) — G; (057, = 0). with ¢; and p; in (13), define
0 Tk _ -
Therefore, what remains to be shown is (17). From the 01 ¢
differentiation ofg; (s; 1) = H;Zl P;j (s;71) Bj—1 and (15), &1 05
we have - p
i Oy (1) = ' CTOk ER™*"
dg; (s; 7) ®) S
Ll 1L I #6 ron o
j=1 I=1,l#j ¢ .

i k L . ¢n71 977, h
=27 Ps s j— Pu(
*Pry1 ( );{51 1(E )(z H#l )P 1)} o == [¢y 0 --- 0] erR™! (19)

= Qkai(k) (ﬁo, o B, Pa (S Tk-) <o Prya (S Tk-)) . ando := @<1>(1) == @(n71>(1)- Then?
Noting the functlonf( ) is given by the summation and 1, Td@@ﬁ(ﬂ ,
multiplication of §; andP (s; ), whereP; (0; ) > 0 and Hg () G® &l < ) (ei') ar o, i<k
B; >0, we have from (8) ’ ’ 0 . =1
4G, (57 — (e oD, i>k+1
‘lvk ‘27 f(l) (Bos -+ Prst (s;m))‘ . . (20)
dry, is equivalent to (12).
dgz 0 . ), <
< Qkai(,? (Bo,+ Prsa (0:72)) = ( Tk) Proof: For all i < k, we can see from the proof of

dry, Theorem 3 that

Then, (17) follows. ‘
Next, we consider the case of > 2. We have

gi (S) - gAz(k) (S)HOC S fz(}c) (¢07 o 'a¢k7p17 o apk-‘rl) .

1 . . .
‘ 5 (k) dg; (s; ) Note that(© 4, (7) , ) is aRD-realization form = 1. When
’ Gi(s) — G (S)Hoo < /0 dry OodT’*" a8 . _, considering the recurrence formula in (7) associated
We can see from with (O, () ,®), we haveP, (0) = —1/6, = pn. Here,
the supposition of?; (0) = p; yields inductively
dG; (s; k) )
dT Pi—1(0) = = Pi—1,
1 ( ) _ei—l _ ¢22717Di (0) Pi—1
Z{( H Pu(s) Bi— 1) (le ) Bi- 1)} and thereforeP; (0) = P; (0;7 = 1) = p; holds for alli €
l= J+1 {1,---,n}. By substitutingr = 1 into
= 2Tk:f1' (507"')6]%7)1 (S.Tk?)f"alpk#»l (87Tk)) d
k (- enT oy (M @) =27 £ (Go.-+ Prsa (0:7)).

and (15) that the funcUorf is given by the summation
and the multiplication of3; andP (s; 7). In addition, since the result follows. Next, for alf < k 41 we have

the function fi(f’f) can be interpreted as an extended function

of £}, whose domain is extended 4o x m matrix, (8) and 0 e = H Pj(0) ¢j—1 = H PiPi-1-
(16) yield i=1
dG; (s;7r) (m) Therefore, the result follows. |
H dry ’ = HQkai,k (Bos+ s Pt (S;Tk))Hoo Remark 1:We can approximately compute the differential
1) coefficient in (20) by
< 2mefiy (Bolls -+ 1P (5570 [l o) .
1) d@(k) (1) o1 - O (1- A7)
= 27 f; K (Do, Pry 1y PRt1) - U~ Y (21)
' dr AT
By substituting this inequality into (18) and the integration, T=1

the result follows. B 30, (1) denotes{©, ()}



for some smallAr. It should be emphasized that the value wo N A P
of (21) can be efficiently found by exploiting the structure
of U, © andO, (1 — A7) [5]. 2 27
In the above arguments, we discuss the model reducton — (U— 1
of the mapping form the input to the states. These results
immediately lead the result for the input-to-output mapping  ~ ()—( )---ommdoree-
as shown in the following corollary:
Corollary 2: Consider theRD-realization (A,B) of the L N 1 sy
dynamical network (1) with the output mapping= CX, 5% 55 1000
whereC = [c1,--+,c,] € RY"™ for ¢; € R1X™, Denote _ _ S _
the transfer function matrix and itsn-th order model by Fig. 4. Dynamical network on two-dimensional lattics x 40 nodes
-1
R G(s) = C(slum—A) B The algorithm of the proposed model order reduction
GW (s) = Cp(slim—Ar)"" By method is as follows:
where A;, and B, in (11), andCy, := Ce™n . Then,G® (s) (@) Transform the dynamical ngtwgrk (1) With the
is stable and ' outputsy = Cz to the RD-realization(.A, B) with
. C = CHT' by Theorem 1.
HG(S) - G® (S)HOOS U=y (22) (b) Give a positive constant as the upper bound of
hold h the approximation error.
0lds, where (c) By Corollary 2, find the minimuni satisfying for
-1
1 T A0, (7) all outputs
=——(el)) —21—|d
=, = { &k } 7 €k 5 (eT'r) dr 1
Mn—k T= —1 o —1
TIh—k = — (€Z+1:n)T o 1o abs (Ck) AsbB(kC) j}j?l(fj?) A”B <e, ifm=1
— S
U= fleall - leall - .
< ifm>2 (24)
Moreover, ifm =1 -veo-1¢ 7 -
HG(S) _ O (S)H < |abs (C) A7 By — abs (C)A‘lB\ i.e., the upper bound of the approximation error
00 whose value is normalized tbat k£ = 0.
- * (23) h lue i lized toat k

holds. In particular, if the elements 6fhave the same sign, (d)  Construct thekm-th order model( Ay, By, Ci).

the relation (23) holds with the equality.

Proof: The proof of the stability ofG(¥) (52 is trivial _ _ _
thanks to the negative definiteness/fNoting Qik) (s) =0 We consider a dynamical network over th_e square lattice
forall i > k + 1. we obtain composed of25 x 40 nodes, as shown in Fig. 4. Suppose

- ' the dynamical network A, B) with C' is given as follows:
Ak & 5(k A € R1000x1000 j5 given b
e -c® )| <Slel|g -6 6| glven by
j=1

B. Numerical Example

> o { 1 (if node i and j, ¢ # j, are connected)
Therefore, (22) follows from Corollary 1. (See [9] for the 7 0 (else, i # j)
case ofm =1.) [ | rm=1 r=0, 1#1

Corollary 2 gives the upper bound of the approximation )
error of the input-to-output mapping. For the model reductiofNd B € R'7%** and C' € R1*1%% are given by
of the dynamical network (1) with the output mapping= 1 0 ... 01”7
Cz, we calculate” asC = CH'. Furthermore, for the multi- B = [ 0 ... 0 1| C¢=[1 - 1],
output systems, we can simply evaluate (22) or (23) for all
outputs. i.e., the inputs are applied at the first ari)0-th nodes and

Remark 2: The proposed model reduction method ighe output is the sum of the all states.
mathematically similar to the model reduction based on The RD-realization(.A, B) with C of this system is given
Arnoldi algorithm in Krylov method (see, e.g., [5], [13]). by Theorem 1. For the matrice® € R5%9%%00 and ¥ ¢
However, Krylov method in general does not produce &*5% derived from (19) and (23), we denote ti& j)-
band matrix in which diagonal entries in off-diagonal blockentry of © by ©; ; and thei-th entry of & by ¥,. Then, in
matrices have the same sign. Moreover, the Krylov methodBe upper figure of Fig. 5, for eadhin the horizontal axis,
cannot provide an a priori error bound for the reductionthe broken line shows the values B¥.”) O ; (.., reaction
On the contrary, the proposed method uses Householderm), the line ofx shows the values 0By x+1 (= ¢ In
transformation to make the diagonal entries in the offf19), i.e., diffusion term), and the solid line shows the values
diagonal block matrices non-negative. The non-negativitgf ¥,. We can see from this figure that the entriesdof
enables to derive the error bound in (22). corresponding the output matrix, have the value of almost
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IV. CONCLUSION

In this paper, we proposed a model order reduction method
for MIMO linear dynamical networks based on the Reaction-
Diffusion transformation. The model reduction is performed
by the direct truncation of the Reaction-Diffusion realization
and preserves the stability of the system. The resultant
approximation error is analyzed in terms of the,-norm.
Thanks to the numerical efficiency of the Reaction-Diffusion
transformation, this method can be applied even to large-
scale systems.
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Bode Diagram

From: In(1) From: In(2)
80
60 [1]
= T 40
o B
T S g [2]
g7 o [3]
2
& 20
B 4
g i ”
z 5]
s 135 [
2e® [6]
gﬂ E] 45
= 5 0 -
e Original system 7]
0 *** Reduced model
10° 10° 10° 10°
Frequency (rad/sec) (8]
Fig. 6.

Bode diagrams of dynamical network on two-dimensional lattice
and reduced order model )

[10]
zero for aroundt > 60, and each value of the reaction term
and the diffusion term decreasesfagcreases. [11

The lower figure of Fig. 5 expresses the values of the leff12]
hand side of (24) by the solid line, i.e., the upper boumﬁ13
of the exact error via the model order reduction, for eac
k. Furthermore, to validate the conservativeness of the error
evaluation, the value of thexact errornormalized tol at
k = 0 is denoted by the line of. This figure shows that
(22) appropriately gives an upper bound of the approximation
error. This figure also shows that the approximation error due
to truncatingXs . g7 t0 Xax 500 is small*. Then, the minimum
of k satisfying (24) is given byt = 87 whene = 0.05.
From Fig. 6, which shows the Bode diagram of the original
dynamical network000-th order; solid line) and that of the
reduced order modeR(x 87-th order; line ofx) at k = 87,
we can see that both Bode diagrams are almost identical.

4The differential coefficient for the estimation is approximately calculated
by using (21) atAT = 0.05.

REFERENCES

S. Boccalettia, V. Latorab, Y. Morenod, M. Chavezf, and D. U.
Hwang, “Complex networks: Structure and dynamid3fiysics Re-
ports, vol. 424-4-5, pp. 175-308, 2006.

N. Masuda and N. Konnd@zomplex NetworkKindai Kagaku sha Co.,
Ltd, 2010.

M. Mesbahi and M. Egerstedgraph Theoretic Methods in Multiagent
Networks Princeton Univerwity Press, 2010.

W. H. A. Schilders and H. A. van der Vordtjodel Order Reductian
Springer, 2008.

A. C. Antoulas, Approximation of Large-Scale Dynamical Systems
Society for Industrial Mathematics, 2005.

A. C. Antoulas, “An overview of model reduction methods and a new
result,” inJoint 48th IEEE Conference on Decision andontrol and 28th
Chinese Control Conferengep. 5357-5360, 2009.

C. L. Beck, J. Doyle, and K. Glover, “Model reduction of multidi-
mensional and uncertain systemiEE Transactions on Automatic
Control, vol. 41,10, pp. 1466-1477, 1996.

H. Sandberg and M. Murray, “Model reduction of interconnected
linear systems,Optimal Control Applications and Methogdgol. 30-3,

pp. 225-245, 2009.

] T. Ishizaki, K. Kashima, and J. Imura, “Extraction of 1-dimensional

reaction-diffussion structure in SISO linear dynamical networks,” in
49th IEEE Conference on Decision and Conty. 5350-5355, 2010.
G. H. Golub and C. F. V. LoarMatrix Computations, Third editian
Johns Hopkins University Press, Baltimore, MD, 1996.

] J. H. Wilkinson,The Algebraic Eigenvalue Problendxford Univ Pr

on Demand, 1988.

S. Kodama and N. SudaJatrix Theory for Systems and Control
CORONA PUBLISHING CO., LTD., 1978.

S. Gugercin,Projection methods for model reduction of large-scale
dynamical systemsPhD thesis, Rice University, 2002.



