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Abstract— In this paper, we propose a model order reduc-
tion method for MIMO linear dynamical networks, where a
large number of subsystems interact according to a network.
In this method, a spatially one-dimensional reaction-diffusion
structure, which can be efficiently exploited even for large-scale
systems, is fully utilized. We give a simple algorithm as well as
a computable error bound in terms of the H∞-norm.

I. I NTRODUCTION

Dynamical systems on large-scale/complex networks,
whose behaviors are determined by the interaction of a large
number of subsystems, have been intensively studied over
the past decades. Examples of such dynamical networks
include World Wide Web, gene regulatory networks, spread
of infection; see [1], [2], [3] for an overview.

This paper addresses the model reduction problem of
MIMO linear systems over large-scale networks expressed
by undirected graphs, whose nodes and edges denote sub-
systems and their interactions, respectively. As one of ap-
proach to solve the reduction problem, we exploit a network
structure transformation that we call the Reaction-Diffusion
transformation. This transformation gives a kind of spatially
one-dimensionalreaction-diffusion structure embedded in the
networks. To execute the Reaction-Diffusion transformation,
we use Householder transformation, which is effective for
making large-scale (symmetric) matrices to band matrices.
Thus, the proposed model reduction method is effective for
large-scale linear systems on undirected graphs.

Many kinds of model reduction methods of linear and
nonlinear systems have been developed [4], [5], [6], [7], [8].
However, matrix factorization methods such as the balanced
truncation require computationally expensive operations,
e.g., gramian computations, although the stability/passivity
property is preserved [4], [5]. Therefore, these methods are
in general difficult to apply to large-scale systems. On the
other hand, Krylov method is also well-known as a model
reduction method for large-scale systems. However, in this
method, the stability property is not preserved, and a priori
computable error bound caused via model reduction has not
been derived even in linear systems [5], [6].

Most recently, we have proposed in [9] a new model re-
duction method for SISO linear dynamical network systems
by focusing on the reaction-diffusion structure. Even though
the method can be applied only for SISO systems, it has the
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stability preservation and provides an explicit error bound
caused via the model reduction, which can be computed
even for large-scale systems by efficient iterative matrix
computations.

The main results of this paper are generalization of the
model reduction strategies for SISO systems proposed in [9]
to MIMO systems. It should be emphasized that the quan-
titative analysis of the reduction error for MIMO systems
is even more difficult. Specifically, the analytical results of
theH∞-norm for SISO systems were derived in [9] only by
utilizing elementary properties of rational transfer functions.
In contrast, we derive in this paper more general expression
of theH∞-norm condition for MIMO systems by exploiting
the bounded real lemma [5].

This paper is organized as follows. In section II, we
describe a system to be studied here and introduce the
Reaction-Diffusion transformation for MIMO systems. In
section III, we analyze the properties of the Reaction-
Diffusion realization and apply the properties to a model
order reduction. In Section IV, a numerical example validates
the proposed method. Section V concludes this paper.
NOTATION: For a vectorv and a matrixM = {mij}, we
use the following notation in this paper:
R the set of real numbers
In the unit matrix of the sizen× n
enk the k-th column vector ofIn
enk1:k2

the k1-th to k2-th columns ofIn
M ⊗N the Kronecker product ofM andN ,

namely{mijN}
∥M∥=σmax(M) the maximum singular value ofM
det (M) the determinant ofM
abs (M) the matrix formed by{|mij |}

In addition, the product of matrices is defined by∏j
k=i Mk := MiMi+1 · · ·Mj and if j < i this is equal to

0. Finally, theH∞-norm of a rational transfer matrixG (s)
is defined by∥G (s)∥∞ := supω∈R σmax (G (jω)).

II. REACTION-DIFFUSION TRANSFORMATION

A. System Description

In this paper, we deal with linear systems over large-scale
complex networks whose general form is given as follows:

Definition 1: The linear system

ẋ = Ax+Bu, x (0) = 0 (1)

with A = {ai,j} ∈ RN×N and B = {bi,j} ∈ RN×m is
said to be adynamical network(A,B) if A is stable and
symmetric, andN = nm for some integern.



Fig. 1. Illustration of network structure

This is a generalization ofundirected reaction-diffusion
systems depicted in Fig. 1:

ẋi = −rixi +
N∑

j=1,j ̸=i

ai,j (xj − xi) +
m∑

k=1

bi,kuk (2)

whereri(≥ 0) denotes the intensity of the reaction (chemical
dissolution) ofxi, andai,j(≥ 0), i ̸= j, denotes the intensity
of the diffusion betweenxi andxj . This coupled dynamics
is stable if at least oneri is strictly positive and the graph is
connected. See, e.g., [3] for a survey on networked systems
and multi-agent systems.

Next, we introduce a class of the state-space realization of
the dynamical network. This representation plays a central
role in this paper and is closely related to spatially one-
dimensional reaction-diffusion systems.

Definition 2: Let (A,B) a dynamical network in (1).
Then, unitaryH is said to be aReaction-Diffusion trans-
formation matrixif A := HAHT andB := HB are in the
form of

A =


α1 βT

1

β1 α2 βT
2

. ..
. . .

. . .
. . .

. . . βT
n−1

βn−1 αn

 ∈ RN×N

B =
[
βT
0 0 · · · 0

]T ∈ RN×m (3)

with some negative definite matricesαi ∈ Rm×m for i ∈
{1, · · · , n} and some upper triangular matrices with non-
negative diagonal entriesβi ∈ Rm×m for i ∈ {0, · · · , n− 1}.
Moreover, the realization(A,B) is called a Reaction-
Diffusion realization1.

Note that the matrixA is a band matrix with the bandwidth
of 2m + 1 since βi is an upper triangular andA has a
block tri-diagonal structure withm×m blocks. For theRD-
realization, we denote the state vectorX := Hx ∈ RN

as X := [XT
1 , · · · ,XT

n ]
T, where Xi ∈ Rm. The internal

structure represents serially-cascaded autonomous systems
equipped with the boundary input, as shown in Fig. 2. In
fact, theRD-realization appears when we apply the finite dif-
ference method to (multi-variable) spatially one-dimensional
reaction-diffusion systems with a boundary input.

1The term“Reaction-Diffusion” is , as necessary, denoted as“RD-”.

Fig. 2. Illustration ofRD-realization

Theorem 1:Consider the dynamical network(A,B) in
(1). There exists a Householder matrixHB that makesHBB
an upper triangular matrix with the non-negative diagonal en-
tries. Furthermore, there exists a Householder matrixHA that
makesHAHBAHBHA a band matrix with the bandwidth of
(2m+ 1) and the non-negative(i, i+m), (i+m, i)-th entries
for all i ∈ {1, · · · , (n− 1)m}. Then, the unitary matrix

H = HAHB (4)

is aRD-realization matrix of the dynamical network(A,B).
Moreover, define

i :=

{
mini{i : βi = 0} if

∏n−1
i=1 βi = 0,

n, otherwise.
(5)

Then,(enm
1:mi

)THenm
1:mi

is uniquely determined.
Proof: See Chapter 5 in [10] for the details of the

Householder transformation. The proof of theRD-realization
is similar to that of Theorem 1 in [9]. Furthermore, any non-
singular matrix can be decomposed to the product of an or-
thogonal matrix and an upper triangular matrix with positive
diagonal terms, namely QR decomposition. By noting the
uniqueness of the QR decomposition ofBi, the uniqueness
of H follows form similar argument as in [9]. (The details
are omitted for space.)

In computer science, matrices are often transformed to
an easily-handled form via similar transformations. In par-
ticular for symmetric matrices, unitary transformations are
desirable to retain the symmetry. It should be emphasized
that the construction of the Householder matrices does not
require computationally expensive operations, such as matrix
factorizations2. Moreover, construction methods of the band
matrix for large matrices have been widely investigated in
the computer science since Householder transformations has
various application such as eigenvalue computation [11]. In
this sense, theRD-transformation can be implemented even
for large-scale systems.

B. Fundamental Properties of MIMO Reaction-Diffusion Re-
alization

In this section, we show alow-passproperty equipped
with theRD-realization. In the rest of this paper, the transfer
function matrix from the inputu ∈ Rm to the stateXi ∈ Rm

in the RD-realization is denoted by

Gi (s) := (eni ⊗ Im)
T
(sInm −A)

−1 B. (6)

2In fact, the Householder transformations require only(2/3)n3 com-
putations for the size of matricesn while, e.g., the computation of the
controllability gramians and the eigen-decomposition require70n3 and
30n3 computations. See [11], [5] for details.



Theorem 2:Let (A,B) be aRD-realization in (3). Then,
Gi (s) in (6) satisfies

Gi (s) =

i∏
j=1

Pj (s)βj−1, (7)

Pj (s) :=
(
e
pn,j

1 ⊗ Im
)T(

sIpn,jm −Aj

)−1(
e
pn,j

1 ⊗ Im
)

wherepn,j := n−j+1 andAj := (enj:n⊗Im)TA(enj:n⊗Im).
Moreover

∥Pi (s)∥∞ = ∥Pi (0)∥ , ∀i ∈ {1, · · · , n} (8)

holds.
Proof: [Proof of (7)] Trivially from the definitions of

Gi andPi, we haveG1 = P1β0, which implies

X1 = P1 (s)β0u.

SupposeXi =
∏i

j=1 Pjβj−1u. By regardingXi as an input
to the state equation ofXi+1, we have

Xi+1 = Pi+1 (s)βi

 i∏
j=1

Pj (s)βj−1u

 .

Hence, (7) holds by the induction. Lemma 1 below includes
(8) as a special case.

Lemma 1:For any stableA = AT ∈ Rn×n and B ∈
Rn×m with m ≤ n∥∥BT(sIn −A)−1B

∥∥
∞ =

∥∥BTA−1B
∥∥ (9)

holds.
Proof: Denote asf (s) := BT(sIn − A)−1B. The

condition ∥f (s)∥∞ ≤ γ holds true if and only if the
Hamiltonian

J (γ) =

[
A 1

γBBT

− 1
γBBT −A

]
has no eigenvalues on the imaginary axis (see [5] for the
details). Here, we have

det (J (γ)) = − det (A)
2
det

(
In − 1

γ2
f (0)

2

)
.

This implies thatJ (γ) has necessarily zero eigenvalues if
γ = ∥f (0)∥. Therefore, due to the continuity ofJ (γ), the
result follows if the eigenvalues ofJ (γ) are real or purely
imaginary. For the symmetric positive definite matrixS :=
(1/γ)BBT we have

J2 (γ) = I2⊗
(
A2 − S2

)
+I2⊗(AS − SA) , I2 =

[
0 1
1 0

]
.

Let a matrixV ∈ Rn×n such thatI2V = V I2. By noting
that A − S = (A− S)

1
2 (A− S)

1
2 is negative definite, the

similar transformation ofJ2 (γ) by V ⊗ (A− S)
1
2 yields{

V −1 ⊗ (A− S)
− 1

2

}
J2 (γ)

{
V ⊗ (A− S)

1
2

}
= I2 ⊗

{
(A− S)

− 1
2
(
A2 − S2 +AS − SA

)
(A− S)

1
2

}
= I2 ⊗

{
(A− S)

1
2 (A+ S) (A− S)

1
2

}
.

Fig. 3. Block diagram ofRD-realization

Since(A− S)
1/2

(A+ S) (A− S)
1/2 is the Hermitian ma-

trix, having real eigenvalues, the result follows.
Fig. 3 depicts the structure of theRD-realization shown

in Theorem 2.

III. A PPLICATION TO MODEL ORDER REDUCTION

A. Approximation Error Analysis

In this section, we propose a model reduction method
based on the direct truncation of theRD-realization. We
simply retain the upperkm states, and analyze a resulting
error bound.

Theorem 3:Consider the transfer function matrixGi (s)
in (6) and define thekm-th order transfer function matrix

Ĝ(k)
i (s) :=

(
eki ⊗ Im

)T
(sIkm −Ak)

−1 Bk (10)

where

Ak := (enm1:km)
T Aenm1:km, Bk := (enm1:km)

T B. (11)

Then, for alli ∈ {1, · · · , n} andk ∈ {1, · · · , n− 1}∥∥∥Gi (s)− Ĝ(k)
i (s)

∥∥∥
∞

(12)

≤


ρk+1

i∑
j=1

ϕj

 k∏
l=j

ρ2l ϕ
2
l

 i∏
l=1,l ̸=j

ρlϕl−1

, i ≤ k

i∏
j=1

ρjϕj−1, i ≥ k + 1

holds, where

ρi := ∥Pi (0)∥ , ϕi := ∥βi∥ . (13)

In particular, ifm = 1∥∥∥Gi (s)− Ĝ(k)
i (s)

∥∥∥
∞

= Gi (0)− Ĝ(k)
i (0) (14)

holds.
Proof: For an integerk ∈ {1, · · · , n− 1}, denote

by Gi (s; τk) the transfer functionGi (s) for which βk

is replaced withτkβk for τk ∈ [0, 1]. Here, note that
Gi (s; τk = 1) = Gi (s) and Gi (s; τk = 0) = Ĝ(k)

i (s). For
i ≥ k + 1, Ĝ(k)

i (s) = 0 and consequently the desired result
holds from Theorem 2. Thus, in what follows, we assume
i ≤ k.

Similarly to Gi (s; τk), denote byPi (s; τk) the function
Pi (s) for which βk is replaced withτkβk for τk ∈ [0, 1].
From (7), using the differential formula for a non-singular
matrix, we have

dPi (s; τk)

dτk
=2τk

 k∏
j=i

Qj (s; τk)

T

Pk+1 (s; τk)
k∏

j=i

Qj (s; τk)

(15)
where Qj (s; τk) := βjPj (s; τk). Furthermore, from the
semi-negative definiteness ofPi (0; τk), we have

∥Pi (0; τk = 1)∥ ≥ ∥Pi (0; τk)∥ , ∀τk ∈ [0, 1] . (16)



First, we consider the case ofm = 1. Noting all the
transfer functions andβi are scalars, we assume∣∣∣∣dGi (s; τk)

dτk

∣∣∣∣ ≤ dGi (0; τk)

dτk
(17)

then we have∥∥∥Gi (s)− Ĝ(k)
i (s)

∥∥∥
∞

=

∣∣∣∣∫ 1

0

dGi (s; τk)

dτk
dτk

∣∣∣∣
≤
∫ 1

0

dGi (0; τk)

dτk
dτk = Gi (0; τk = 1)− Gi (0; τk = 0) .

Therefore, what remains to be shown is (17). From the
differentiation ofGi (s; τk) =

∏i
j=1 Pj (s; τk)βj−1 and (15),

we have

dGi (s; τk)

dτk
=

i∑
j=1

dPj (s)

dτk
βj−1

i∏
l=1,l ̸=j

Pl (s)βl−1


= 2τkPk+1 (s)

i∑
j=1

βj−1

 k∏
l=j

Pl(s)
2
β2
l

 i∏
l=1,l ̸=j

Pl (s)βl−1


=: 2τkf

(1)
i,k (β0, · · · , βk,P1 (s; τk) , · · · ,Pk+1 (s; τk)) .

Noting the functionf (1)
i,k is given by the summation and

multiplication ofβi andPi (s; τk), wherePi (0; τk) ≥ 0 and
βi ≥ 0, we have from (8)∣∣∣∣dGi (s; τk)

dτk

∣∣∣∣ = ∣∣∣2τkf (1)
i,k (β0, · · · ,Pk+1 (s; τk))

∣∣∣
≤ 2τkf

(1)
i,k (β0, · · · ,Pk+1 (0; τk)) =

dGi (0; τk)

dτk
.

Then, (17) follows.
Next, we consider the case ofm ≥ 2. We have∥∥∥Gi (s)− Ĝ(k)

i (s)
∥∥∥
∞

≤
∫ 1

0

∥∥∥∥dGi (s; τk)

dτk

∥∥∥∥
∞
dτk. (18)

We can see from
dGi (s; τk)

dτk

=

i∑
j=1


 i∏

l=j+1

Pl (s)βl−1

dPj (s)

dτk
βj−1

(
j−1∏
l=1

Pl (s)βl−1

)
=: 2τkf

(m)
i,k (β0, · · · , βk,P1 (s; τk) , · · · ,Pk+1 (s; τk))

and (15) that the functionf (m)
i,k is given by the summation

and the multiplication ofβi andPi (s; τk). In addition, since
the functionf (m)

i,k can be interpreted as an extended function

of f (1)
i,k , whose domain is extended tom×m matrix, (8) and

(16) yield∥∥∥∥dGi (s; τk)

dτk

∥∥∥∥
∞

=
∥∥∥2τkf (m)

i,k (β0, · · · ,Pk+1 (s; τk))
∥∥∥
∞

≤ 2τkf
(1)
i,k (∥β0∥ , · · · , ∥Pk+1 (s; τk)∥∞)

= 2τkf
(1)
i,k (ϕ0, · · · , ϕk, ρ1, · · · , ρk+1) .

By substituting this inequality into (18) and the integration,
the result follows.

Theorem 3 states that for single-input systems, we have the
exact error. Here, (12) seems inconvenient for the calculation
due to its complicate form. The following corollary gives an
equivalent expression of the error bound (12) as a closed
matrix form:

Corollary 1: For the constants

θn := − 1

ρn
, θi := − 1

ρi
− ϕ2

i ρi+1, i ∈ {1, · · · , n− 1}

with ϕi andρi in (13), define

Θ⟨k⟩ (τ) :=



θ1 ϕ1

ϕ1 θ2
. ..

. ..
. .. τϕk

τϕk
. . .

. . .
. . .

. . . ϕn−1

ϕn−1 θn


∈Rn×n

Φ :=
[
ϕ0 0 · · · 0

]T ∈ Rn×1 (19)

andΘ := Θ⟨1⟩(1) = · · · = Θ⟨n−1⟩(1). Then3

∥∥∥Gi (s)− Ĝ(k)
i (s)

∥∥∥
∞

≤


−1

2
(eni )

T
dΘ−1

⟨k⟩(τ)

dτ

∣∣∣∣∣
τ=1

Φ, i ≤ k

− (eni )
T
Θ−1Φ, i ≥ k + 1

(20)
is equivalent to (12).

Proof: For all i ≤ k, we can see from the proof of
Theorem 3 that∥∥∥Gi (s)− Ĝ(k)

i (s)
∥∥∥
∞

≤ f
(1)
i,k (ϕ0, · · · , ϕk, ρ1, · · · , ρk+1) .

Note that
(
Θ⟨k⟩ (τ) ,Φ

)
is aRD-realization form = 1. When

τ = 1, considering the recurrence formula in (7) associated
with

(
Θ⟨k⟩ (τ) ,Φ

)
, we havePn (0) = −1/θn = ρn. Here,

the supposition ofPi (0) = ρi yields inductively

Pi−1 (0) =
1

−θi−1 − ϕ2
i−1Pi (0)

= ρi−1,

and thereforePi (0) = Pi (0; τ = 1) = ρi holds for all i ∈
{1, · · · , n}. By substitutingτ = 1 into

d

dτ

(
− (eni )

T
Θ−1

⟨k⟩ (τ)Φ
)
= 2τf

(1)
i,k (ϕ0, · · · ,Pk+1 (0; τ)) ,

the result follows. Next, for alli ≤ k + 1 we have

− (eni )
T
Θ−1Φ =

i∏
j=1

Pj (0)ϕj−1 =
i∏

j=1

ρjϕj−1.

Therefore, the result follows.
Remark 1:We can approximately compute the differential

coefficient in (20) by

dΘ−1
⟨k⟩ (τ)

dτ

∣∣∣∣∣
τ=1

Ψ ≃
Θ−1 −Θ−1

⟨k⟩ (1−∆τ)

∆τ
Ψ (21)

3Θ−1
⟨k⟩ (τ) denotes

{
Θ⟨k⟩ (τ)

}−1



for some small∆τ . It should be emphasized that the value
of (21) can be efficiently found by exploiting the structure
of Ψ, Θ andΘ⟨k⟩ (1−∆τ) [5].

In the above arguments, we discuss the model reduction
of the mapping form the input to the states. These results
immediately lead the result for the input-to-output mapping
as shown in the following corollary:

Corollary 2: Consider theRD-realization (A,B) of the
dynamical network (1) with the output mappingy = CX ,
whereC = [c1, · · · , cn] ∈ R1×nm for ci ∈ R1×m. Denote
the transfer function matrix and itskm-th order model by

G (s) := C (sInm −A)
−1 B

Ĝ(k) (s) := Ck (sIkm −Ak)
−1 Bk

whereAk andBk in (11), andCk := Cenm1:km. Then,Ĝ(k) (s)
is stable and ∥∥∥G (s)− Ĝ(k) (s)

∥∥∥
∞
≤ ΨΞk (22)

holds, where

Ξk :=

[
ξk

ηn−k

]
,


ξk = −1

2
(en1:k)

T
dΘ−1

⟨k⟩ (τ)

dτ

∣∣∣∣∣
τ=1

Φ

ηn−k = −
(
enk+1:n

)T
Θ−1Φ

Ψ :=
[
∥c1∥ · · · ∥cn∥

]
.

Moreover, ifm = 1∥∥∥G (s)− Ĝ(k) (s)
∥∥∥
∞
≤
∣∣abs (Ck)A−1

k Bk − abs (C)A−1B
∣∣

(23)
holds. In particular, if the elements ofC have the same sign,
the relation (23) holds with the equality.

Proof: The proof of the stability ofĜ(k) (s) is trivial
thanks to the negative definiteness ofA. Noting Ĝ(k)

i (s) = 0
for all i ≥ k + 1, we obtain∥∥∥G (s)− Ĝ(k) (s)

∥∥∥
∞

≤
n∑

j=1

∥cj∥
∥∥∥Gj (s)− Ĝ(k)

j (s)
∥∥∥
∞

.

Therefore, (22) follows from Corollary 1. (See [9] for the
case ofm = 1.)

Corollary 2 gives the upper bound of the approximation
error of the input-to-output mapping. For the model reduction
of the dynamical network (1) with the output mappingy =
Cx, we calculateC asC = CHT. Furthermore, for the multi-
output systems, we can simply evaluate (22) or (23) for all
outputs.

Remark 2:The proposed model reduction method is
mathematically similar to the model reduction based on
Arnoldi algorithm in Krylov method (see, e.g., [5], [13]).
However, Krylov method in general does not produce a
band matrix in which diagonal entries in off-diagonal block
matrices have the same sign. Moreover, the Krylov methods
cannot provide an a priori error bound for the reduction.
On the contrary, the proposed method uses Householder
transformation to make the diagonal entries in the off-
diagonal block matrices non-negative. The non-negativity
enables to derive the error bound in (22).

Fig. 4. Dynamical network on two-dimensional lattice;25× 40 nodes

The algorithm of the proposed model order reduction
method is as follows:

(a) Transform the dynamical network (1) with the
outputsy = Cx to theRD-realization(A,B) with
C = CHT by Theorem 1.

(b) Give a positive constantε as the upper bound of
the approximation error.

(c) By Corollary 2, find the minimumk satisfying for
all outputs

abs (Ck)A−1
k Bk − abs (C)A−1B

−abs (C)A−1B
< ε, if m = 1

ΨΞk

−ΨΘ−1Φ
< ε, if m ≥ 2, (24)

i.e., the upper bound of the approximation error
whose value is normalized to1 at k = 0.

(d) Construct thekm-th order model(Ak,Bk, Ck).

B. Numerical Example

We consider a dynamical network over the square lattice
composed of25 × 40 nodes, as shown in Fig. 4. Suppose
the dynamical network(A,B) with C is given as follows:
A ∈ R1000×1000 is given by

ai,j =

{
1 (if node i and j, i ̸= j, are connected)
0 (else, i ̸= j)

r1 = 1, ri = 0, i ̸= 1

andB ∈ R1000×2 andC ∈ R1×1000 are given by

B =

[
1 0 · · · 0
0 · · · 0 −1

]T
, C =

[
1 · · · 1

]
,

i.e., the inputs are applied at the first and1000-th nodes and
the output is the sum of the all states.

The RD-realization(A,B) with C of this system is given
by Theorem 1. For the matricesΘ ∈ R500×500 and Ψ ∈
R1×500 derived from (19) and (23), we denote the(i, j)-
entry ofΘ by Θi,j and thei-th entry ofΨ by Ψi. Then, in
the upper figure of Fig. 5, for eachk in the horizontal axis,
the broken line shows the values of

∑500
i=1 Θk,i (i.e., reaction

term), the line of∗ shows the values ofΘk,k+1 (= ϕk in
(19), i.e., diffusion term), and the solid line shows the values
of Ψk. We can see from this figure that the entries ofΨ,
corresponding the output matrix, have the value of almost
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zero for aroundk ≥ 60, and each value of the reaction term
and the diffusion term decreases ask increases.

The lower figure of Fig. 5 expresses the values of the left-
hand side of (24) by the solid line, i.e., the upper bound
of the exact error via the model order reduction, for each
k. Furthermore, to validate the conservativeness of the error
evaluation, the value of theexact errornormalized to1 at
k = 0 is denoted by the line of∗. This figure shows that
(22) appropriately gives an upper bound of the approximation
error. This figure also shows that the approximation error due
to truncatingX2×87 toX2×500 is small4. Then, the minimum
of k satisfying (24) is given byk = 87 when ε = 0.05.
From Fig. 6, which shows the Bode diagram of the original
dynamical network (1000-th order; solid line) and that of the
reduced order model (2× 87-th order; line of∗) at k = 87,
we can see that both Bode diagrams are almost identical.

4The differential coefficient for the estimation is approximately calculated
by using (21) at∆τ = 0.05.

IV. CONCLUSION

In this paper, we proposed a model order reduction method
for MIMO linear dynamical networks based on the Reaction-
Diffusion transformation. The model reduction is performed
by the direct truncation of the Reaction-Diffusion realization
and preserves the stability of the system. The resultant
approximation error is analyzed in terms of theH∞-norm.
Thanks to the numerical efficiency of the Reaction-Diffusion
transformation, this method can be applied even to large-
scale systems.
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