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~ Abstract—A novel clustering method for single-input dynam-  dynamical network and approximating its input-to-state map-
ical networks is proposed, where we aggregate state variables ping within a specified approximation error precision. In
that behave similarly for any input signals. This clustering  ths yroposed approach, the network structure transformation

method is based on the Reaction-Diffusion transformation, led a R fi Diffusion t f i hich has b
which can be applied to large-scale networks, and preserves the callied a Reaction~Diiusion tansiormation, which Nas Deen

stability as well as a kind of network structure of the original ~ Proposed in [12] by the authors, is fully exploited to find
system. In addition, the upper bound of the state discrepancy a set of state variables that behaves similarly for any input

caused by the clustering is evaluated in terms off..-norm. signals, called a cluster set of nodes. Thus, the proposed
approach does not need a priori knowledge on cluster
sets. Furthermore, thanks to the numerical efficiency of the

Dynamical systems on large-scale complex networkgye,ction-Diffusion transformation, the proposed method can
whose behaviors are determined by the interaction of a large applied to large-scale dynamical networks

number of subsystems, have been widely studied over theAS the first step of the above approach, we have prelimi-

past decades. Examples of such dynamical networks incluge . = . ; : )
World-Wide-Web, gene regulatory networks, spread of infecﬂgrlly discussed in [13] a network clustering problem. How

tion- 11 121 73] f . F hd . Iever in that paper, no theoretical error evaluation has been
ion; see [1], [2], [3] for an overview. For suc ynam'caé}ovided. In this paper, we formulate a network clustering

I. INTRODUCTION

:leéwotriki, 'tr 'EIC::]JC'iaI 0 a:gdcrjefsr % Clgsfrr':gt'ﬁ ads?r? vr\?hci)d oblem in more general setting by introducing the notion of
eduction problem, 1.€., a model reduction metho “Weak reducibility, and provides a solution to this problem.

each set of state variables clustered in a certain way IS, . . . i .
This paper is organized as follows: In section Il, we

aggregated. This enables us to efficiently analyze the coarse . ; )
) . escribe a systems, or the system to be investigated and
properties of the original large-scale system such as the . e
. 2 . récap fundamental results on the Reaction-Diffusion trans-

mean behaviors. This is because the new state variables,0

. . ormation. Section Ill poses and solves a network clustering
the reduced model express the system behaviors given . : e .
; . - . problem, where the properties of the Reaction-Diffusion
aggregating a certain set of the original state variables.

. realization are utilized to solve the problem. In the last of the
As one of such possible approaches, the state aggregation .. . .

. ; . section, a numerical example demonstrates and validates the
based on singular perturbation of dynamical networks have

been intensively developed in [4], [5], [6]. However, this ki”dpr8$2$|eg$ eih(?[d. Elnally S,?Ctlon ;\\2 conclbj\;es th;; paper.
of approach cannot explicitly take account of the effect of th he foll - L€ tvt' € avec czjr,_ar:h_ Lo in matrices.
external input. Furthermore, a kind of structure-preservin € following notation 1S used in this paper.

model reduction methods have been developed. The paper® the set of real numbers

[7], [8] address this kind of problem, more specifically, the I» the unit matrix of the size. x n
problem of the order reduction of a dynamical network as €k the -th column vector off,,

well as preserving some underlying structure of systems sucl§t. > the £, -th 1o k»-th columns off,,

as the Lagrangian structure and the second-order structuréMill the maximum singular value a¥/,
However, these methods only deal with the preservation ofdiag (v) the diagonal matrix whose diagonal
certain formula of differential equations. In addition, even entries are the entries of

though [9] discuss the reduction problem of each subsysten?iag (M1, ..., My)  the block diagonal matrix composed
interconnected by a network, it requires a priori knowledg of My,..., M, . :
on clustering of the subsystems ([10] has somewhat relaxj € Hoo-norm of a stable proper transfer function matrix

the assumption) and it does not give a theoretical evaluati (tS)I "T’D de;::ned i)y||fG_ (‘:)”00 ::f SupwhE_R U‘“"‘a‘ (G (tjw»tﬁ
of the approximation accuracy. Egerestdt in [11] has als ° e the set of integers, for whicfZ| denotes the

o . H ; n nx|Z| i
solved a similar problem from the controllability and graphcardma"ty of 7 and ez € R denates the matrix

theory points of view for a limited class of linear dynamicaIWhoSe column vectors are composedegffor & € 7 (in
networks. o i
On the other hand, we propose a new type of netwonz<_{ 1oy k)

clustering method for reducing the dimension of a linear

some order ofk), i.e., e} = [e},...,ep | € R™™ for

II. INTRODUCTION OFREACTION-DIFFUSION
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Fig. 2. Depiction ofRD-realization.
does not depend on the choice Bt Actually, the column
vectors ofHTe;L_f. span the controllable sub-space. That is,

i =mn if and only if (A, b) is controllable.
In what follows, we denote

{ g(s):= (sInT—A)*lb { G(s):= (sInT—A)*B
9i (s) = (ef) g(s), Gi(s)=(e}) G(s).

Then, we see that the followinpw-passproperty in the

Fig. 1. Depiction of dynamical networks. RD-realization:
Proposition 1 (Theorem 2 in [12])Let (A, B) be RD-
Definition 1: The linear system realization in (3). Theng; in (5) satisfies
= Az +bu (1) 1Gi (s)|l.c = Gi (0), Vie{l,...,n}. (6)
with A = {a;;} € R"™" andb = {b;} € R is said to Corollary 1: Consider theRD-transformation of the dy-
be adynamical network A, b) if A is stable and symmetric. "@mical network (1). Fork € {1,...,n} and the RD-
Moreover, ifa; ; for i # j andb; are all non-negative, we transformation matrixt/ = {h; ; }
call apqsitivedynam_ical_ network: _ o hii=-=h1:=0, hg;#0 )
This is a generalization ofindirected reaction-diffusion ) . ) .
systems depicted in Fig. 1: holds if and only if the relative degree ¢f is k.

Proof: For the transfer functiorg; in (5), we have
gi (s) = Yr_; hi.iGk (s). The result follows from the fact
that the relative degree @fy is k. [ |
Corollary 1 indicates that we can identify the relative
wherer; (> 0) denotes the intensity of the reaction (chemicatlegree ofg; (s), which is the transfer function from to
dissolution) ofz;, and a; ;(> 0) for ¢ # j denotes the =z; in the original dynamical networks, by examining the
intensity of the diffusion betweem; and «;. This coupled column vectors of theRD-transformation matrixH. This
dynamics is stable if at least ong is strictly positive further implies that if (7) holds, the distance (the smallest
and the graph is connected. See, e.g., [3] for a survey osrumber of the edges) between the node having the input and
networked systems and multi-agent systems. This reactiotie i-th node isk.
diffusion structure over the network can be represented in
the following spatially one-dimensionahanner: ) _
Definition 2: Let (A,b) be a dynamical network in (1). A. Network Clustering based on State Aggregation

n
T; = —r;x; + Z aj,j (Ij — £177) + bju (2)
J=1,j#i

IIl. APPLICATION TONETWORK CLUSTERING

Then, unitaryH is said to beReaction-Diffusion transfor-  In this subsection, we outline a network clustering method
mation matrixif A := HAH' andB := Hb are in the form based on the aggregation of states. First, we define the
of following notion of network clustering:
a1 B Definition 3: Cpnsider the dynamical networf4,b) in
8 as fBa (1). A family of index sets{Zy }icr for L := {1,...,L}
is called acluster set(its element is referred to as a
A = € R™" cluster) if each element is a disjoint subsef{®f...,n} and
B, U;@L Iy = {1,_. .. 7n.}. An aggregation matrix(compatible
Bt on with {Z;; }icL) is defined by
n L
B [ BO 0 0 } €R (3) P:= Diag(p[l],...,p[L])QERAXTL, A= 251 (8)
with some negative constant; for i € {1,...,n} and 1=1

some non-negative consta; for i € {0,...,n—1}.

H 6l><|I[l]| < T —
Moreover, the realizatiof4, B) is calledReaction-Diffusion with py) € R such thatd; < [Zy | and pypyy = I,

and the permutation matrix

realization

Hereafter, the t_ernT‘Reaction—_Diffusion“ is denoteq as — [ n 7~--,62L}T€ R, e e RrR¥|Zw| 9)
“RD-". As shown in Theorem 1 in [12], we can effectively t ] m
construct aRD-transformation matrixd. Moreover Then, the aggregated modefassociated withP) of the

dynamical network 4, b) in (1) is given by

= min;{i : 5; = 0} if H?:_I B; =0,
{ Z ' @ (PAPT,Pb) . (10)

1= .
n, otherwise



Theorem 1:Consider theRD-transformation of the dy-

Coarse namical network (1). Define

Aggregated model

(PAPT,Pb) HE = diag (g) He}, € R Tl (14)

Then, (13) is equivalent to

T
Dynamical Network ay (Hﬁ]) =0. (15)
(4,0)

01 Fine Furthermore, for each € 1L, take a unitary matrix

Fig. 3. lllustration of network clustering based on state aggregation. [p[Tl],qE]]T e RIZwlx|Zul satisfying (15). Then, the aggre-
_ o gated model associated within (8) is stable and satisfies
In this definition, there aré clusters labeled by.. Then,

each node (state variable) belongs to exactly one of them, g(s)=g(s). (16)
or equivalently, the behavior dfth cluster in the original Proof: [Necessity of (15)] We have

system is represented by, := (eg“ )Tz. On the other hand, T T

the aggregated model has the same number of clusters as that ~ dj] (63[”> g9(s) = ap (egm) H'G(s).

of the original system with the state variabig, = py;z[;.
Note thatPAPT is symmetric and the aggregation matrix
P clearly satisfiesPPT = IA. In what follows, we derive
a condition under whichr;; can be recovered frona; in

a suitable sense. From the model reduction points of view,
a smallJ; is desirable for reducing the order of dynamical

The necessity follows from the following facts:

e G, = 0fori > i, and{G;}'_,, wherei is defined in
(4), are linearly independent,

« thei-th entryg, of g is 0 if and only if i > 3.

[Sufficiency of (15)] Denoting

networks. |Ziy |- T i i 1x|Zy |
. . [ q[l] = {q ..»q cR [

Remark 1:Most of traditional model reduction methods, \ * 1> Sy |
such as the balanced truncation, Hankel-norm approximation hl, - hi
and Krylov projection [14], which provide a reduced model U] |Zw 10 .
appropriately approximating the input-to-output mapping of Het, = s : e R |7wl,
a given system, does not preserve $patial informationof h?[l] h|"z I

[1]

the original system. In other words, the network structure
of the system is destroyed through the reduction. On tHeondition (15) implies
contrary, we propose a model reduction based on the state |z .
aggregation. As shown in Fig. 3, the network structure Zqimhk[z]% —0, { Vi € {1,...,|Im| —51}
(spatial distribution) of internal states is retained through the = T Vke{l,...,n}.
reduction. We refer to such state aggregation of dynamic
networks ametwork clustering

Hereafter, we denote the transfer function from the input
to the state of the aggregated model by

%k/ Proposition 1, we have

|IU]|761 ! n T
e qp] (ezm) g(s)

{ g(s) :=PT (sIn — PAPT) "' Pb (11) n 7wl 1wl

gi (s) = () (s). =222 diuhiuGe ()| < DD ajhies

Furthermore, the DC gain vector of the states of Rie- k=1 j=1 L i

realization, whose elements represent the maximum gain @here the right-hand side &

Gi (s) as shown in Proposition 1, is denoted by [Proof of (16)] The stability of is trivial from the negative

g:= —A'BeR", (12) definiteness ongConsidering the coordinate transformation

by unitary [PT,P |7, we have

which can be efficiently obtained by solvindg + B = 0 = 1

with exploiting the structure oft and [14], [15]. Then, let 9(s) = g(s)+E(s)P(slp—A) b A7)

us begin with the simple situation where some of the clusters ~ Z(s) = P' (sla — PAPT)_1 PAP' +P.

in the_orlglnal d)./namlcal network have redundancy as in thﬁote that =
following sense:

(s) is stable. DefineP by replacingpy by
. =T . .
Definition 4: Under Definition 3, if there exists a row- dij for eachl € L in (8). Then,[PT,P |7 is unitary, and

fullrank matrix q; € R(Zw]-8)%|Zu| sych that P (s, — A)~'b =0 by the reducibility of (13). m
. Theorem 1 implies that the reducibility of the clusTgy is
ag (e%m) g(s) =0, (13) cr;aract_erlz_ed by the (column) rank deficiency qf the matrix
HE,, which is composed dfZ;; | column vectors ofliag(g)
then the clustef; is said to bereducible obtained through thBD-transformation. This further implies

The following theorem characterizes the reducibilityZgf ~ that a lower order aggregated model is obtaineﬁim for
via the RD-transformation: eachl € L has lower rank.



B. Cluster Determination [Proof of the error evaluation] We prove based on (17).
Hereafter, we suppos& — 1 for all [ € L. This means Note that|[P|| = |[P|| =1 and

that every cluster is aggregated into only one variable. In - -1 .

this section, aiming at significant order reduction, we relax H(SIA - PAP ) HOO = H(PAP ) H < ||A Hv

the reducibility ofZy; in (13) through its equivalent charac-

terization in (15). Leth;;y andhf, for j € {1,.... |7y}

denote a column vector dffe7 ~and Hf‘l], namely

which follows from Lemma 1 in [12] and Cauchy interlacing
theorem (see Proposition 3.26 in [14]). This means that
IZ (s)]|, in (17) is bounded by a positive constant that does

n not depend orP. Thus, it suffices to show
HGI“] = {th’ ceey h|I[l]|[l]] 5 (18) P

5 -1
g _ g g ) g n HP (sl — A) bH <cf (23)
H[l] = l:hl[l]"”’h|Z[l]|[l]:| s h][l]7hj[l] € R".

o0

" e
We impose the following less-restrictive assumption: for aftor a positive constant. The matan[l] in (18) can be

least onej € {1,...,|Zy|}, gThyyy # 0 for all I € L; rewritten as
thus without loss of generalitg™h,; # 0 for all | € L. . h’f[l] S
Actually, g"h;y; is always positive for allj in the case of Hy = gThl[l]g Her, + {0,1;2, o Uz
positivedynamical networks; see Corollary 2 below.
Definition 5: Consider the dynamical network (1). Thewhere

clusterZy; is 6-weakly reduciblef gThlm #0 and v — he . _ 9Thjm ho
J M Thyq 7
g iy
T
o 9 hjn g ,
I gThy higl <0, Vie{L,2,..., ||} (19) Noting gTHegm = pp), we take a unitary matrifpg;, ] ",
. _— . f hich
In this definition, the constar represents the distance orwhic
from the reducibility. The following lemma shows that (19 i i
. . y. Ne1q 9 (19) an (Hﬁ]) =qp [0,1127 "U\Imd
is equivalent to (15) i = 0:
Lemma 1:Let & = 1 and ghyy # 0. Then, Zy s holds. The definition of-weakly reducible clusters implies
reducible if and only if it |so-weaI§Iy reduc'lble.. o]l < 6 for all j € {2,...,|Zy|}. Hence, (23) follows
Proof: When¢; = 1, the Iy is reducible if and only from the same argument as that in the proof of Theorem 1.
if the (column) rank OfHﬁ] is 1. Namely, for all j, there m
existc; € R such thath?, = c;h{,. Noteg'h;; is equal  Theorem 2 indicates that by taking the aggregation matrix
to the sum of all entries dﬁ?m. Hence,c; should be given as in (20), we can construct the aggregated model such that
by ¢; = gThj[z]/gThw]- m the difference betweeg andg is linearly bounded by and

Here, we propose to construct a cluster set such thtiteir DC gains are identical.
all clusters ared-weakly reducible. This notion yields an Remark 2:In this network clustering method, the value
aggregated model having the following properties: of the transfer function ab-frequency is matched. This
Theorem 2:Consider theRD-transformation of the dy- property is similar to that of moment matching methods [16],
namical network (1). Suppose the clusgy for all / € L. including the Krylov projection methods [14]. It should be

is 6-weakly reducible, and define emphasized that most of the moment matching methods do
. not provide theglobal error bound like as (21) instead of

P = Zf[l] € R1X|I“1|, = gTHe%m. (20) matching the transfer function at some points in the complex

|p[l]H plane. On the contrary, this method enables to provide the

Then, the aggregated model associated With (8) satisfies error bound by exploiting the particular properties of the
RD-transformation. In addition, since we evaluated the state
9(0)=¢g(0), llg(s) g (s)lloc < b (1) giscrepancyy — CPT4 is apparently close tg — Cz for
for a positive constant. any C' and input.

Proof: [Proof of the preservation of the DC gain] Furthermore, for positive dynamical networks (see Defini-
The desired result ist—'b = PT (PAPT)fl Pb. Clearly, it tion 1), the proposed clustering method can retain the relative

suffices to show degree of the original system as follows:
T S Corollary 2: Consider theRD-transformation of thgos-
b= AP (PAP ) : (22) itive dynamical network (1). Under the same notation in
. . 1y [s . 1T Theorem 2, assume that for all i € Z;;; have the same
By direct calculation, we hav@A™'b = [ppy,-- . Pm)] - fojative degree. Then, the aggregated model is again a

Therefore, (22) can be rewritten as positive dynamical network for whicly; and g; have the

same relative degree for eveihe {1,...,n}.
Proof: For the relative degree, it suffices to show that
This equality can be easily verified. the edges connecting the clustérg andZ;; do not vanish

. . 1T T A T 7
[p[l],---7p[Lﬂ :{P[l]P[1]P[1],-~-,P[L]P[L]p[L]] .



through the aggregation. The condition for preserving edges
betweenZ; andZ;; is represented as

.
n T
PLi] (efm) Aez, Py # 0 (24)

for all i, € {1,...,n} such that(eg[i])TAeg L F 0,05
Here, the negative definiteness, the irreduci[f)ility and the non-
negativity of the off-diagonal entries of imply the positivity
of the entries of-A~! [18]. Note thatpy; in (20) can be
rewritten aspy;) = —bTAflegi , Which implies thatp|;) has
positive entries. Hence, (24) follows from the non-negative
property of A. The non-negativity oP APT and Pb follows
from the positivity ofpy,). ]
From the viewpoint of the approximation of the input-
output properties, Corollary 2 guarantees the preservation
of the high-frequency properties. In particular for dynamical Fig- 4. Dynamical network on Holme-Kim model (3000 nodes).
networks, it further implies the preservation of the distance 3000
(the smallest number of the edges) between the node having
an input and all the other nodes. Therefore, by combining
Theorem 2 and Corollary 2, for a positive dynamical net-
work, we can derive a clustered positive dynamical network
not only approximating the overall input-to-output mapping
of the original system with a specified error bound, but also
having the same DC gain, and the same relative degree as 0 )
the original ones. Value of §
The algorithm of the proposed network clustering method Fig. 5. Order of resultant models versus value®.of
is as follows:

(a) Calculate RD-transformation by applying Theo- shows the number of clusters versus the coarseness thdex
rem 1 in [12], and then findiag (g) H in (14). Fig. 6 and Fig. 7 show the clustered networks fo= 0.3
(b)  Fix the value of a positive constafitin Theorem 2 andf = 3, respectively. The order of the dynamical network
as the coarseness of the aggregated model. is reduced tdL| = 344 and|L| = 49 from n = 3000. Fig. 8
(c) Find a ¢-weakly reducible cluster se{Zj }ic.  shows the distribution of cluster siz&y|. In both cases, the
(such thatg; for all i € Zj; have the same relative maximal clusters are in the 5-th layer.
degree, for positive dynamical network case.) Fig. 9 shows the Bode diagrams of the original dynamical
(d)  Derive the aggregation matriR in (8) with (20).  network ¢000-th order, solid line) and the aggregated models
(e)  Construct the aggregated mod@&APT, Pb) with  (344-th and49-th order, the line of and o) at the 3000-th
CPT. node. From this figure, we can see that the low- and high-

C. Numerical Example; Network Clustering for Dynamicalfrequency properties are exactly retained, and also the overall
properties are almost identical in both cases.

System on Complex Network

We consider a dynamical system on the complex network IV. CONCLUSION
of a Holme-Kim model in Fig. 4, which is well-known as
an extension of the Barabasi-Albert model, and has the higp
cluster coefficient as well as the scale-free and small-worlfjgssion transformation. In this method, from the control

properties [1]. The model in Fig. 4 ha800 nodes and000  heory points of view, the sets of states that behave similarly
edges in which some hubs are included and the first nodei§; 5y input signals are interpreted as sets of uncontrollable
connected to every other node witiiredges. In the figure, (o weakly controllable) states. Moreover, it has been shown
each node is ordered accordingly to the distance from thea; guch states are efficiently found via the Reaction-
first node. Construct the positive dynamical netwérk b)  pitysjon transformation. The method aggregates these states
in (2) by taking without loss of the network structure, in which a cluster-wise
S { 1, if nodes i and j are connected for i 4 j system description i; obFained. In additiqn, the stability and
I 0, otherwise, J an H..-norm approximation error bound is guaranteed.
rm=1 r=0, 1#1
b=1[1,0,...,0]" € R,

2500

2000

1500 [

1000 |

Order of model

500

2 3

In this paper, a network clustering method for linear
namical networks has been proposed by using Reaction-
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