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Abstract— A novel clustering method for single-input dynam-
ical networks is proposed, where we aggregate state variables
that behave similarly for any input signals. This clustering
method is based on the Reaction-Diffusion transformation,
which can be applied to large-scale networks, and preserves the
stability as well as a kind of network structure of the original
system. In addition, the upper bound of the state discrepancy
caused by the clustering is evaluated in terms ofH∞-norm.

I. I NTRODUCTION

Dynamical systems on large-scale complex networks,
whose behaviors are determined by the interaction of a large
number of subsystems, have been widely studied over the
past decades. Examples of such dynamical networks include
World-Wide-Web, gene regulatory networks, spread of infec-
tion; see [1], [2], [3] for an overview. For such dynamical
networks, it is crucial to address a clustering-based model
reduction problem, i.e., a model reduction method in which
each set of state variables clustered in a certain way is
aggregated. This enables us to efficiently analyze the coarse
properties of the original large-scale system such as the
mean behaviors. This is because the new state variables of
the reduced model express the system behaviors given by
aggregating a certain set of the original state variables.

As one of such possible approaches, the state aggregation
based on singular perturbation of dynamical networks have
been intensively developed in [4], [5], [6]. However, this kind
of approach cannot explicitly take account of the effect of the
external input. Furthermore, a kind of structure-preserving
model reduction methods have been developed. The papers
[7], [8] address this kind of problem, more specifically, the
problem of the order reduction of a dynamical network as
well as preserving some underlying structure of systems such
as the Lagrangian structure and the second-order structure.
However, these methods only deal with the preservation of
certain formula of differential equations. In addition, even
though [9] discuss the reduction problem of each subsystem
interconnected by a network, it requires a priori knowledge
on clustering of the subsystems ([10] has somewhat relaxed
the assumption) and it does not give a theoretical evaluation
of the approximation accuracy. Egerestdt in [11] has also
solved a similar problem from the controllability and graph
theory points of view for a limited class of linear dynamical
networks.

On the other hand, we propose a new type of network
clustering method for reducing the dimension of a linear
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dynamical network and approximating its input-to-state map-
ping within a specified approximation error precision. In
the proposed approach, the network structure transformation
called a Reaction-Diffusion transformation, which has been
proposed in [12] by the authors, is fully exploited to find
a set of state variables that behaves similarly for any input
signals, called a cluster set of nodes. Thus, the proposed
approach does not need a priori knowledge on cluster
sets. Furthermore, thanks to the numerical efficiency of the
Reaction-Diffusion transformation, the proposed method can
be applied to large-scale dynamical networks.

As the first step of the above approach, we have prelimi-
narily discussed in [13] a network clustering problem. How-
ever in that paper, no theoretical error evaluation has been
provided. In this paper, we formulate a network clustering
problem in more general setting by introducing the notion of
weak reducibility, and provides a solution to this problem.

This paper is organized as follows: In section II, we
describe a systems, or the system to be investigated and
recap fundamental results on the Reaction-Diffusion trans-
formation. Section III poses and solves a network clustering
problem, where the properties of the Reaction-Diffusion
realization are utilized to solve the problem. In the last of the
section, a numerical example demonstrates and validates the
proposed method. Finally Section IV concludes this paper.
NOTATION: Let v be a vector, andM1, . . . ,Mn matrices.
The following notation is used in this paper:
R the set of real numbers
In the unit matrix of the sizen× n
enk the k-th column vector ofIn
enk1:k2

the k1-th to k2-th columns ofIn
∥M1∥ the maximum singular value ofM1

diag (v) the diagonal matrix whose diagonal
entries are the entries ofv

Diag (M1, . . . ,Mn) the block diagonal matrix composed
of M1, . . . ,Mn

The H∞-norm of a stable proper transfer function matrix
G (s) is defined by∥G (s)∥∞ := supω∈R σmax (G (jω)) .
Let I be the set of integers, for which|I| denotes the
cardinality of I and enI ∈ Rn×|I| denotes the matrix
whose column vectors are composed ofenk for k ∈ I (in
some order ofk), i.e., enI =

[
enk1

, . . . , enkm

]
∈ Rn×m for

I = {k1, . . . , km}.

II. I NTRODUCTION OFREACTION-DIFFUSION

TRANSFORMATION

In this paper, we deal with linear systems on large-scale
complex networks whose general form is given as follows:



Fig. 1. Depiction of dynamical networks.

Definition 1: The linear system

ẋ = Ax+ bu (1)

with A = {ai,j} ∈ Rn×n and b = {bi} ∈ Rn is said to
be adynamical network(A, b) if A is stable and symmetric.
Moreover, if ai,j for i ̸= j and bi are all non-negative, we
call a positivedynamical network.

This is a generalization ofundirected reaction-diffusion
systems depicted in Fig. 1:

ẋi = −rixi +
n∑

j=1,j ̸=i

ai,j (xj − xi) + biu (2)

whereri(≥ 0) denotes the intensity of the reaction (chemical
dissolution) of xi, and ai,j(≥ 0) for i ̸= j denotes the
intensity of the diffusion betweenxi and xj . This coupled
dynamics is stable if at least oneri is strictly positive
and the graph is connected. See, e.g., [3] for a survey on
networked systems and multi-agent systems. This reaction-
diffusion structure over the network can be represented in
the following spatially one-dimensionalmanner:

Definition 2: Let (A, b) be a dynamical network in (1).
Then, unitaryH is said to beReaction-Diffusion transfor-
mation matrixif A := HAHT andB := Hb are in the form
of

A =


α1 β1

β1 α2 β2

. . .
. . .

. . .
. . .

. . . βn−1

βn−1 αn

 ∈ Rn×n

B =
[
β0 0 · · · 0

]
∈ Rn (3)

with some negative constantαi for i ∈ {1, . . . , n} and
some non-negative constantβi for i ∈ {0, . . . , n− 1}.
Moreover, the realization(A,B) is calledReaction-Diffusion
realization.

Hereafter, the term“Reaction-Diffusion” is denoted as
“RD-”. As shown in Theorem 1 in [12], we can effectively
construct aRD-transformation matrixH. Moreover

i :=

{
mini{i : βi = 0} if

∏n−1
i=1 βi = 0,

n, otherwise
(4)

Fig. 2. Depiction ofRD-realization.

does not depend on the choice ofH. Actually, the column
vectors ofHTen

1:i
span the controllable sub-space. That is,

ī = n if and only if (A, b) is controllable.
In what follows, we denote{
g (s) := (sIn −A)

−1
b

gi (s) := (eni )
T
g (s) ,

{
G (s) := (sIn −A)

−1 B
Gi (s) := (eni )

T G (s) .
(5)

Then, we see that the followinglow-passproperty in the
RD-realization:

Proposition 1 (Theorem 2 in [12]):Let (A,B) be RD-
realization in (3). Then,Gi in (5) satisfies

∥Gi (s)∥∞ = Gi (0) , ∀i ∈ {1, . . . , n}. (6)

Corollary 1: Consider theRD-transformation of the dy-
namical network (1). Fork ∈ {1, . . . , n} and the RD-
transformation matrixH = {hi,j}

h1,i = · · · = hk−1,i = 0, hk,i ̸= 0 (7)

holds if and only if the relative degree ofgi is k.
Proof: For the transfer functionGi in (5), we have

gi (s) =
∑n

k=1 hk,iGk (s). The result follows from the fact
that the relative degree ofGk is k.

Corollary 1 indicates that we can identify the relative
degree ofgi (s), which is the transfer function fromu to
xi in the original dynamical networks, by examining the
column vectors of theRD-transformation matrixH. This
further implies that if (7) holds, the distance (the smallest
number of the edges) between the node having the input and
the i-th node isk.

III. A PPLICATION TO NETWORK CLUSTERING

A. Network Clustering based on State Aggregation

In this subsection, we outline a network clustering method
based on the aggregation of states. First, we define the
following notion of network clustering:

Definition 3: Consider the dynamical network(A, b) in
(1). A family of index sets{I[l]}l∈L for L := {1, . . . , L}
is called a cluster set (its element is referred to as a
cluster) if each element is a disjoint subset of{1, . . . , n} and∪

l∈L I[l] = {1, . . . , n}. An aggregation matrix(compatible
with {I[l]}l∈L) is defined by

P := Diag
(
p[1], . . . , p[L]

)
Q ∈ R∆×n, ∆ :=

L∑
l=1

δl (8)

with p[l] ∈ Rδl×|I[l]| such thatδl ≤
∣∣I[l]∣∣ andp[l]p

T
[l] = Iδl ,

and the permutation matrix

Q =
[
enI[1]

, . . . , enI[L]

]T
∈ Rn×n, enI[l]

∈ Rn×|I[l]|. (9)

Then, the aggregated model(associated withP) of the
dynamical network(A, b) in (1) is given by(

PAPT,Pb
)
. (10)



Fig. 3. Illustration of network clustering based on state aggregation.

In this definition, there areL clusters labeled byL. Then,
each node (state variable) belongs to exactly one of them,
or equivalently, the behavior ofl-th cluster in the original
system is represented byx[l] := (enI[l]

)Tx. On the other hand,
the aggregated model has the same number of clusters as that
of the original system with the state variablex̂[l] = p[l]x[l].
Note thatPAPT is symmetric and the aggregation matrix
P clearly satisfiesPPT = I∆. In what follows, we derive
a condition under whichx[l] can be recovered from̂x[l] in
a suitable sense. From the model reduction points of view,
a smallδl is desirable for reducing the order of dynamical
networks.

Remark 1:Most of traditional model reduction methods,
such as the balanced truncation, Hankel-norm approximation
and Krylov projection [14], which provide a reduced model
appropriately approximating the input-to-output mapping of
a given system, does not preserve thespatial informationof
the original system. In other words, the network structure
of the system is destroyed through the reduction. On the
contrary, we propose a model reduction based on the state
aggregation. As shown in Fig. 3, the network structure
(spatial distribution) of internal states is retained through the
reduction. We refer to such state aggregation of dynamical
networks asnetwork clustering.

Hereafter, we denote the transfer function from the input
to the state of the aggregated model by{

g (s) := PT
(
sI∆ − PAPT

)−1
Pb

gi (s) := (eni )
Tg (s) .

(11)

Furthermore, the DC gain vector of the states of theRD-
realization, whose elements represent the maximum gain of
Gi (s) as shown in Proposition 1, is denoted by

g := −A−1B ∈ Rn, (12)

which can be efficiently obtained by solvingAg + B = 0
with exploiting the structure ofA andB [14], [15]. Then, let
us begin with the simple situation where some of the clusters
in the original dynamical network have redundancy as in the
following sense:

Definition 4: Under Definition 3, if there exists a row-
fullrank matrix q[l] ∈ R(|I[l]|−δl)×|I[l]| such that

q[l]

(
enI[l]

)T

g (s) = 0, (13)

then the clusterI[l] is said to bereducible.
The following theorem characterizes the reducibility ofI[l]

via theRD-transformation:

Theorem 1:Consider theRD-transformation of the dy-
namical network (1). Define

Hg
[l] := diag (g)HenI[l]

∈ Rn×|I[l]|. (14)

Then, (13) is equivalent to

q[l]

(
Hg

[l]

)T

= 0. (15)

Furthermore, for eachl ∈ L, take a unitary matrix
[pT[l], q

T
[l]]

T ∈ R|I[l]|×|I[l]| satisfying (15). Then, the aggre-
gated model associated withP in (8) is stable and satisfies

g (s) = g (s) . (16)

Proof: [Necessity of (15)] We have

q[l]

(
enI[l]

)T

g (s) = q[l]

(
enI[l]

)T

HTG (s) .

The necessity follows from the following facts:
• Gi = 0 for i > ī, and {Gi}īi=1, where ī is defined in

(4), are linearly independent,
• the i-th entrygi of g is 0 if and only if i > ī.
[Sufficiency of (15)] Denoting(
e
|I[l]|−δl
i

)T

q[l] =
[
qi1[l], . . . , q

i

|I[l]|[l]
]
∈ R1×|I[l]|

HenI[l]
=


h11[l] · · · h1|I[l]|[l]

...
. . .

...
hn1[l] · · · hn|I[l]|[l]

 ∈ Rn×|I[l]|,

condition (15) implies

|I[l]|∑
j=1

qij[l]h
k
j[l]gk = 0,

{
∀i ∈

{
1, . . . ,

∣∣I[l]∣∣− δl
}

∀k ∈ {1, . . . , n} .

By Proposition 1, we have∥∥∥∥∥
(
e
|I[l]|−δl
i

)T

q[l]

(
enI[l]

)T

g (s)

∥∥∥∥∥
∞

=

∥∥∥∥∥∥∥
n∑

k=1

|I[l]|∑
j=1

qij[l]h
k
j[l]Gk (s)

∥∥∥∥∥∥∥
∞

≤
n∑

k=1

∣∣∣∣∣∣∣
|I[l]|∑
j=1

qij[l]h
k
j[l]gk

∣∣∣∣∣∣∣
where the right-hand side is0.

[Proof of (16)] The stability ofg is trivial from the negative
definiteness ofA. Considering the coordinate transformation
by unitary [PT,P

T
]T, we have

g (s) = g (s) + Ξ (s)P (sIn −A)
−1

b (17)

Ξ (s) = PT
(
sI∆ − PAPT

)−1
PAP

T
+ P

T
.

Note that Ξ (s) is stable. DefineP by replacing p[l] by

q[l] for eachl ∈ L in (8). Then, [PT,P
T
]T is unitary, and

P (sIn −A)
−1

b = 0 by the reducibility of (13).
Theorem 1 implies that the reducibility of the clusterI[l] is

characterized by the (column) rank deficiency of the matrix
Hg

[l], which is composed of
∣∣I[l]∣∣ column vectors ofdiag(g)H

obtained through theRD-transformation. This further implies
that a lower order aggregated model is obtained ifHg

[l] for
eachl ∈ L has lower rank.



B. Cluster Determination

Hereafter, we supposeδl = 1 for all l ∈ L. This means
that every cluster is aggregated into only one variable. In
this section, aiming at significant order reduction, we relax
the reducibility ofI[l] in (13) through its equivalent charac-
terization in (15). Lethj[l] and hgj[l] for j ∈ {1, . . . ,

∣∣I[l]∣∣}
denote a column vector ofHenI[l]

andHg
[l], namely

HenI[l]
=

[
h1[l], . . . , h|I[l]|[l]

]
, (18)

Hg
[l] =

[
hg1[l], . . . , h

g

|I[l]|[l]

]
, hj[l], h

g
j[l] ∈ Rn.

We impose the following less-restrictive assumption: for at
least onej ∈ {1, . . . ,

∣∣I[l]∣∣}, gThj[l] ̸= 0 for all l ∈ L;
thus without loss of generalitygTh1[l] ̸= 0 for all l ∈ L.
Actually, gThj[l] is always positive for allj in the case of
positivedynamical networks; see Corollary 2 below.

Definition 5: Consider the dynamical network (1). The
clusterI[l] is θ-weakly reducibleif gTh1[l] ̸= 0 and∥∥∥∥∥hgj[l] − gThj[l]

gTh1[l]
hg1[l]

∥∥∥∥∥ ≤ θ, ∀j ∈ {1, 2, . . . ,
∣∣I[l]∣∣}. (19)

In this definition, the constantθ represents the distance
from the reducibility. The following lemma shows that (19)
is equivalent to (15) ifθ = 0:

Lemma 1:Let δl = 1 and gTh1[l] ̸= 0. Then, I[l] is
reducible if and only if it is0-weakly reducible.

Proof: When δl = 1, the I[l] is reducible if and only
if the (column) rank ofHg

[l] is 1. Namely, for all j, there
exist cj ∈ R such thathgj[l] = cjh

g
1[l]. Note gThj[l] is equal

to the sum of all entries ofhgj[l]. Hence,cj should be given
by cj = gThj[l]/g

Th1[l].
Here, we propose to construct a cluster set such that

all clusters areθ-weakly reducible. This notion yields an
aggregated model having the following properties:

Theorem 2:Consider theRD-transformation of the dy-
namical network (1). Suppose the clusterI[l] for all l ∈ L
is θ-weakly reducible, and define

p[l] =
p̂[l]∥∥p̂[l]∥∥ ∈ R1×|I[l]|, p̂[l] := gTHenI[l]

. (20)

Then, the aggregated model associated withP in (8) satisfies

g (0) = g (0) , ∥g (s)− g (s)∥∞ ≤ αθ (21)

for a positive constantα.
Proof: [Proof of the preservation of the DC gain]

The desired result isA−1b = PT
(
PAPT

)−1
Pb. Clearly, it

suffices to show

b = APT
(
PAPT

)−1
. (22)

By direct calculation, we haveQA−1b =
[
p̂[1], . . . , p̂[L]

]T
.

Therefore, (22) can be rewritten as[
p̂[1], . . . , p̂[L]

]T
=

[
p[1]p

T
[1]p̂[1], . . . , p[L]p

T
[L]p̂[L]

]T
.

This equality can be easily verified.

[Proof of the error evaluation] We prove based on (17).
Note that∥P∥ =

∥∥P∥∥ = 1 and∥∥∥(sI∆ − PAPT
)−1

∥∥∥
∞

=
∥∥∥(PAPT

)−1
∥∥∥ ≤

∥∥A−1
∥∥ ,

which follows from Lemma 1 in [12] and Cauchy interlacing
theorem (see Proposition 3.26 in [14]). This means that
∥Ξ (s)∥∞ in (17) is bounded by a positive constant that does
not depend onP. Thus, it suffices to show∥∥∥P (sIn −A)

−1
b
∥∥∥
∞

≤ cθ (23)

for a positive constantc. The matrixHg
[l] in (18) can be

rewritten as

Hg
[l] =

hg1[l]
gTh1[l]

gTHenI[l]
+
[
0, v2, . . . , v|I[l]|

]
where

vj := hgj[l] −
gThj[l]
gTh1[l]

hg1[l].

Noting gTHenI[l]
= p̂[l], we take a unitary matrix[pT[l], q

T
[l]]

T,
for which

q[l]

(
Hg

[l]

)T

= q[l]

[
0, v2, . . . , v|I[l]|

]T
holds. The definition ofθ-weakly reducible clusters implies
∥vj∥ ≤ θ for all j ∈ {2, . . . ,

∣∣I[l]∣∣}. Hence, (23) follows
from the same argument as that in the proof of Theorem 1.

Theorem 2 indicates that by taking the aggregation matrix
as in (20), we can construct the aggregated model such that
the difference betweeng andg is linearly bounded byθ and
their DC gains are identical.

Remark 2: In this network clustering method, the value
of the transfer function at0-frequency is matched. This
property is similar to that of moment matching methods [16],
including the Krylov projection methods [14]. It should be
emphasized that most of the moment matching methods do
not provide theglobal error bound like as (21) instead of
matching the transfer function at some points in the complex
plane. On the contrary, this method enables to provide the
error bound by exploiting the particular properties of the
RD-transformation. In addition, since we evaluated the state
discrepancy,̂y = CPTx̂ is apparently close toy = Cx for
anyC and input.

Furthermore, for positive dynamical networks (see Defini-
tion 1), the proposed clustering method can retain the relative
degree of the original system as follows:

Corollary 2: Consider theRD-transformation of thepos-
itive dynamical network (1). Under the same notation in
Theorem 2, assume thatgi for all i ∈ I[l] have the same
relative degree. Then, the aggregated model is again a
positive dynamical network for whichgi and gi have the
same relative degree for everyi ∈ {1, . . . , n}.

Proof: For the relative degree, it suffices to show that
the edges connecting the clustersI[i] andI[j] do not vanish



through the aggregation. The condition for preserving edges
betweenI[i] andI[j] is represented as

p[i]

(
enI[i]

)T

AenI[j]
pT[j] ̸= 0 (24)

for all i, j ∈ {1, . . . , n} such that(enI[i]
)TAenI[j]

̸= 0, i ̸= j.
Here, the negative definiteness, the irreducibility and the non-
negativity of the off-diagonal entries ofA imply the positivity
of the entries of−A−1 [18]. Note thatp̂[i] in (20) can be
rewritten asp̂[i] = −bTA−1enI[i]

, which implies thatp[i] has
positive entries. Hence, (24) follows from the non-negative
property ofA. The non-negativity ofPAPT andPb follows
from the positivity ofp[i].

From the viewpoint of the approximation of the input-
output properties, Corollary 2 guarantees the preservation
of the high-frequency properties. In particular for dynamical
networks, it further implies the preservation of the distance
(the smallest number of the edges) between the node having
an input and all the other nodes. Therefore, by combining
Theorem 2 and Corollary 2, for a positive dynamical net-
work, we can derive a clustered positive dynamical network
not only approximating the overall input-to-output mapping
of the original system with a specified error bound, but also
having the same DC gain, and the same relative degree as
the original ones.

The algorithm of the proposed network clustering method
is as follows:

(a) Calculate RD-transformation by applying Theo-
rem 1 in [12], and then finddiag (g)H in (14).

(b) Fix the value of a positive constantθ in Theorem 2
as the coarseness of the aggregated model.

(c) Find a θ-weakly reducible cluster set{I[l]}l∈L
(such thatgi for all i ∈ I[l] have the same relative
degree, for positive dynamical network case.)

(d) Derive the aggregation matrixP in (8) with (20).
(e) Construct the aggregated model(PAPT,Pb) with

CPT.

C. Numerical Example; Network Clustering for Dynamical
System on Complex Network

We consider a dynamical system on the complex network
of a Holme-Kim model in Fig. 4, which is well-known as
an extension of the Barabasi-Albert model, and has the high
cluster coefficient as well as the scale-free and small-world
properties [1]. The model in Fig. 4 has3000 nodes and6000
edges in which some hubs are included and the first node is
connected to every other node within6 edges. In the figure,
each node is ordered accordingly to the distance from the
first node. Construct the positive dynamical network(A, b)
in (2) by taking

ai,j =

{
1, if nodes i and j are connected
0, otherwise,

for i ̸= j

r1 = 1, ri = 0, i ̸= 1

b = [1, 0, . . . , 0]
T ∈ R3000.

By implementing agreedy algorithm, we determineθ-
weakly reducible clusters inside each layer in Fig. 4. Fig. 5
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Fig. 4. Dynamical network on Holme-Kim model (3000 nodes).
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Fig. 5. Order of resultant models versus values ofθ.

shows the number of clusters versus the coarseness indexθ.
Fig. 6 and Fig. 7 show the clustered networks forθ = 0.3
andθ = 3, respectively. The order of the dynamical network
is reduced to|L| = 344 and|L| = 49 from n = 3000. Fig. 8
shows the distribution of cluster size

∣∣I[l]∣∣. In both cases, the
maximal clusters are in the 5-th layer.

Fig. 9 shows the Bode diagrams of the original dynamical
network (3000-th order, solid line) and the aggregated models
(344-th and49-th order, the line of∗ and◦) at the3000-th
node. From this figure, we can see that the low- and high-
frequency properties are exactly retained, and also the overall
properties are almost identical in both cases.

IV. CONCLUSION

In this paper, a network clustering method for linear
dynamical networks has been proposed by using Reaction-
Diffusion transformation. In this method, from the control
theory points of view, the sets of states that behave similarly
for any input signals are interpreted as sets of uncontrollable
(or weakly controllable) states. Moreover, it has been shown
that such states are efficiently found via the Reaction-
Diffusion transformation. The method aggregates these states
without loss of the network structure, in which a cluster-wise
system description is obtained. In addition, the stability and
anH∞-norm approximation error bound is guaranteed.
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