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%odel Reduction via Projection

Given stable system Find  stable reduced model
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(A, B) (A, C) n < n
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(A,B.C) —— (A, B,C) = (PAP' PB,CP")

Find P such that ||~ — 2| is small enough

2/22



Z|-] : Laplace transform
|- | : Frobenius norm

Typical System Norms

t
— Solution ¥(?) :/ h(t — T)u(T)dr
Stable system ) : { t=Ar+ Bu 0

y=~Cx Impulse response h(t) := Ce*'B

Transfer function H(s) := £[h] = C(sl,, — A)"'B

Hoc-nOrm | H (jw) Maximum gain
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» Clustering-based State Aggregation in terms of H..-norm

» How to reduce systems while preserving network topology?

» Use of positive tri-diagonalization
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» Preservation of network topology as well as positivity

» Use of controllability gramian

» Application to Chemical Master Equation

4/22



System Description

[Definition] Bidirectional Network (A.b)

i = Ax+bu with A= {a;;} € R"*" and b= {b;} € R"

is said to be bidirectional network (A, b) if A is symmetric and stable.

Including reaction-diffusion systems: ; = i — ;) + biu

: diffusion between z; and x;
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Traditional Model Reduction

» Traditional model reduction methods
» Balanced truncation, Krylov projection, Hankel norm approximation
» No specific structure in transformation matrix P

Drawback: Network structure (spatial information) is destroyed

Given (A,b) A, b:Sparse © Reduced model (PAPT, Pb)
v PP =1,
u
o
G
G ¥

PAP', Pb : Dense ©®

Need to impose suitable sparse structure on P
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Clustering-based State Aggregation

» Aggregation of disjoint sets of states (clusters) {zp.....z}

» Block-diagonally structured aggregation matrix P = Diag (ppj. .- .. pr))

» Interconnection topology among clusters is preserved ©

~ X1 Pl xp
X=Pr & [A[ ]] = [ . p[g]] [ H] How to find reducible clusters?

T2]

v For simplicity, Aggregation = Averaging: 1" =[1,....1]
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Key Observation
to Construct Reducible Clusters

Given (A. b) _U_) 50th order [?tate trajectory under random input]

-------------------- S ] About T
| X o W n W trajectories

Clustering I'
accordingly to behavior

-

- ca:n be agéregated into |

7 dimensional variables??
TNeoet ) 1 2 3 4

[Definition] Reducible Cluster

A cluster 7;, is said to be reducible if

Vi,j € I s.t. z;(t) = z;(t) under any input signal u(7).




Positive Tri-diagonalization

[Lemma] For every bidirectional network (A,b), there exists a unitary
H € R"*" such that (4,b) = (HTAH, H"b) has the structure below.

Bidirectional network (A, b) Positive tri-diagonal realization (A, b)
i=Ar+bu, A=AT A Tn
" u BO> 3 O --------
(not necessarily positive) "0 B2 () () B”HQ
o1 B Metzler [ Bo
B1 as [ 0
L . P | o
/Bn—l
i Br—1 QXn | 0

B; >0 forall ie{0,....,n—1}




Reducibility Characterization

Bidirectional network (A, b) (A, 5) : positive tri-diagonal realization
H :transformation matrix

Index matrix

® := Hdiag(—A~'D)

e R — A~ 'p : DC-gain < Maximal gain
reducible reducible

due to positivity
1 0 0 0 0°
0 120 —020 0 0[] .
- identical
=10 120 —020 0 0 |]
0 060 040 0 0 1| .. &
0 060 040 0 0 |

Cluster reducibility is characterized by rows of ®
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Reducible Cluster Aggregation

Reducibility: Vi,j € Iy s.t. gi(s) = g;(s) d = Hdiag(—A~1b)

[Theorem] A cluster Z;; is reducible iff Vi, j € Z; s.t. row;[®] = row;[®].

Furthermore, if all clusters are reducible, then g(s) = g(s) holds.

A coarse Aggregated model (PAPT. Pb)

8(s) = PT(sI, — PAPT) 'Pb

with p = Dld%(pm _____ p[u) c RLxn

Dynamical network (A4,b)
g(s)=(sl, —A)~""b

Relaxation to |[row;[®] — row,;[®]|| < 6 ?7?
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Reducibility Relaxation

[Definition] #-reducible Cluster v vlli. = [lv" |1, for row vector v

A cluster Z;;: is said to be 6 -reducible if

Vj € Iy, Fi € Iy s.t. [[row;[P] — row;[P][[, <.

¢ : coarseness parameter

[Theorem] If all clusters are §-reducible, then

lg(s) = &(s)[Ix.. < Val(PAPT)T'PAJ6

L
holds where o := ), [Z;|(|Zy] — 1). linear dependence on 4

Preservation: Stability and Interconnection topology among clusters ©

In addition, %; represents average of original state =,
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Cluster Set Construction

* Give 0 € Ry, Initialize {Zjj}ie =0, L=0, 1 =0

— While {Zp}tier #{1,...,n}
o |++, L+ {L,!}

* Choose i< {1,...,n}\{Zjj}ieL , Set Iy = {i}

e Forall je{1,....n}\{Zp }icL,
if (i,7) satisfies (x), then 7, « {Zy,}

- reducibility : ()

~ o~

[row;[®] —row,;[®]|, <6 where &= Hdiag(—A'b)

v Cluster set to be obtained is not necessarily unique
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Numerical Example

» Diffusion process over the Holme-Kim model (3000 th dim.)

lg(s) — &(s)||%_ <0.16 (lessthan0.5% error) if 6 = 1.82

_ D|m of
_ reduced model

Errorbound |

The value of 6

5 45 4 35 3 25 2 15 1

276 clusters
(276t dimensional model)
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System Description

[Definition] Positive Network (A.b)

v = Av + bu with A = {a,;;} € R"™ and b = {b;} € R" is said to be

positive network (A, b) if A is Metzler and (marginally) stable, and b € R .

Metzler matrix : having

non-negative off-diagonal entries

R : non-negative R

non-negative property
x(t) e R}, VYue Ry, Vte|0,00)

e.g., Heat diffusion systems, Electric circuit systems, Markovian processes

Model reduction while preserving positivity, stability and network
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Reducibility Characterization (#.-case)

Given (A,b) with stable 4 Controllability gramian

P = / e (eMh) T dt
J0

v Lyapunov equation A® + dAT + 0" =0

reducible reducible Cholesky factorization ®.¢T = @

039 0 0 0

0
0.21 0.19 0 0 O , _
- identical
®.=1 021 0.19 0 0 0 [
024 0.18 0.05 0.00 0 || ., ..
- identical
| 0.24 0.18 0.05 0.00 0

Cluster reducibility is characterized by rows of ©..
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Ho-State Aggregation

[Definition] 6 -reducible Cluster o0 = [* e (eAh) T dt

The cluster Z; is said to be g -weakly reducible if
Vi e I[l], Ji € I[l] S.t. ||I'0Wi[q)c] — IoOwW; [q)c]H < 4.

() : coarseness parameter

[Theorem] If all clusters are #-weakly reducible, then

lg(s) = &)l < Ve l(sIL — PAPT) TP Al 0

L
holds where « := Zz:1|I[Z]|(‘I[l]‘ —1). linearly bounded by &

Preservation: Stability, Positivity, Interconnection topology among clusters
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Generalization to

Gramian is not defined if A has zero-eigenvalue ®

Marginally Stable Positive Networks

OO

<0

Projected gramian & = / WTeWAW (T eWAW )T gy

where W e R(—Dx7 js orthogonal complement of v; such that v A = 0.

S { » Controllability gramian of stable projected system (W AW 1Wb)

» Unique positive semi-definite matrix for (A, b)

[ —0.18 —0.05 0 0

0.07 —-0.01 0 0

.= 007 —-0.01L 0 0

\ < 002 004 0 0
— A : Graph Laplacian | 0.02 0.04 0 O

Cholesky factorization ®.®' = @

- identical

- identical

19/22



Application to
Chemical Master Equation (CME)

Michaelis-Menten system ex) Initial number of S;,S, are both K =2

. [Realizable distributions]
S1+ 52 = 53 o 1

2 B [0 ]
— 2 > | S
(SR QY ST A Realization ol < { — g
'“ probability z1(t}| 0] 2ao(t)| 0| x3(t)]0
¢; : reaction rate constant o '¢'
- [ 1] 0]
State = :=|ry.....x,| with z,(0)=1 20 S |1
| | (0 2 = |
T :174(t)_1_ $5(t)_1_
CME expression: & = Az, x(0)=1[1,0,...,0] |
— _0_
» Continuous-time Markovian process g
» off-diagonal entries of A are non-negative zo(t)| 2 |

» columnsumsof A arezero < Y x;(t) =1 (zero-eigenvalue)
» n=(K+1)(K+2)/2 th dimensional

20/22



Numerical Example

: Pr =X :
i = Az, 2(0)=1[1,0.....0]" % =PAPTx, %(0) = Px(0)

>

n = 10011th order if 0 =5x107° L = 1077 th order

[Reduced order versus ¢ ] [Trajectories of z and PT% ]
1 : ; z 1 ; ; ; : : .

______________________________________________________________________________________________

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

1 \/ ahdatefS——f—Q ,,,,, as. , 1A . - ::z, solld I|nes
e f:oarseness parameter 0 e e dot lines

400 \ _________ S NSNS NS— S— ] RN T oL .- ‘‘‘‘‘‘‘‘‘‘ T - o

Relative error of + — P'% in H.-norm: 2.4%
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Yi Summary

» Clustering-based State Aggregation
» positive tri-diagonalization leads to # ..-aggregation

» controllability graman leads to - -aggregation

» Preserving interconnection topology as well as stability, positivity

» Application to diffusion process over complex networks and CMEs

A coarse Aggregated model (PAPT. Pb)

8(s) = PT(sI, — PAPT) 'Pb

with P — le‘f—’)(p[]] _____ PIL] ) c L’%LXH

Dynamical network (A, b)
g(s)=(sl, —A) b
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