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Model Reduction via Projection 

input-to-state map state-to-output map Dim. of state: 

Given stable system Stable reduced model Find 

✓ 

Find      such that                 is small enough 
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Typical System Norms 
: Laplace transform 

: Frobenius norm 

-norm 

Stable system 
Impulse response 

Transfer function 

Solution 

Maximum gain 

Energy of 

-norm of  

✓ 

-norm 

✓ 
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System Description 

[Definition]  Bidirectional Network 

with and 

is said to be bidirectional network if      is symmetric and stable.  

Including reaction-diffusion systems: 

: reaction of : diffusion between       and 
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Traditional Model Reduction 

Traditional model reduction methods 
Balanced truncation,  Krylov projection,  Hankel norm approximation 
No specific structure in transformation matrix 

Given : Sparse  

: Dense 

: Dense   

Drawback:  Network structure (spatial information) is destroyed 

Reduced model 

 Need to impose suitable sparse structure on     

✓ 
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Clustering-based State Aggregation 

Aggregation of disjoint sets of states (clusters) 
Block-diagonally structured aggregation matrix 
Interconnection topology among clusters is preserved   

How to find reducible clusters? 

Cluster 

For simplicity,  Aggregation  =  Averaging:                              

Fine 

Coarse 

✓ 
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Clustering 
accordingly to behavior 

Key Observation 
to Construct Reducible Clusters 

[Definition]  Reducible Cluster 

Given [State trajectory under random input] 

can be aggregated into 
dimensional variables?? 

About 
trajectories 

A cluster       is said to be reducible if 

50th order 

Cluster 

where under any input signal        . 



Positive Tri-diagonalization 

Positive tri-diagonal realization Bidirectional network 

for all  

Metzler 

(not necessarily positive) 

[Lemma] 
such that                                        has the structure below. 
For every bidirectional network           , there exists a unitary 



Reducibility Characterization 

Bidirectional network 

Cluster reducibility is characterized by rows of 

identical 

identical 

reducible reducible 

: positive tri-diagonal realization 
: transformation matrix 

Index matrix 

: DC-gain       Maximal gain 
due to positivity 
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Reducible Cluster Aggregation 

[Theorem] A cluster       is reducible iff 

Reducibility:  

Dynamical network 

Aggregated model 

Furthermore,  if all clusters are reducible,  then holds. 

Relaxation to                                           ?? 

with 

Fine 

Coarse 
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Reducibility Relaxation 

[Definition]      -reducible Cluster 

A cluster       is said to be    -reducible if 

[Theorem] If all clusters are    -reducible,  then 

holds where  

Preservation:  Stability and Interconnection topology among clusters   

In addition,       represents average of original state  

linear dependence on 

: coarseness parameter 

✓  for row vector  
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Cluster Set Construction 

if          satisfies      ,  then 

- reducibility : 

• Choose 

• Give                ,  Initialize 

• For all                                         ,  

,  Set 

While 
•  

where 

✓ Cluster set to be obtained is not necessarily unique 
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Numerical Example 
Diffusion process over the Holme-Kim model (3000 th dim.) 

                                              (less than 0.5% error)  if  

The value of 

276 clusters 

Error bound 

(276th dimensional model) 

Dim. of 
reduced model 
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System Description 

[Definition]  Positive Network 

with and 

positive network if      is Metzler and (marginally) stable, and               .  

e.g.,  Heat diffusion systems,  Electric circuit systems,  Markovian processes 

Model reduction while preserving positivity, stability and network 

non-negative property 

is said to be 

Metzler matrix :  
non-negative off-diagonal entries 

:  non-negative 

having 
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Reducibility Characterization (   -case) 

Given Controllability gramian 

Cluster reducibility is characterized by rows of 

Lyapunov equation 

identical 

identical 

reducible reducible 

with stable 

✓  

Cholesky factorization 

17/22 



     -State Aggregation 

[Definition]      -reducible Cluster 

The cluster       is said to be    -weakly reducible if 

[Theorem] If all clusters are    -weakly reducible,  then 

holds where  

Preservation:  Stability,  Positivity,  Interconnection topology among clusters 

linearly bounded by 

: coarseness parameter 

✓  
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Generalization to 
Marginally Stable Positive Networks 

Controllability gramian of stable projected system 
Unique positive semi-definite matrix for  

Gramian is not defined if      has zero-eigenvalue   

Projected gramian 

where                          is orthogonal complement of       such that 

✓ 

identical 

identical 

Cholesky factorization 

: Graph Laplacian 19/22 



Application to 
Chemical Master Equation（CME） 

Michaelis-Menten system 

State with 

CME expression: 

ex) Initial number of              are both  

Continuous-time  Markovian process 
off-diagonal entries of       are non-negative 
column sums of      are zero                                         (zero-eigenvalue) 

                                              th dimensional 

: reaction rate constant 

Realization  
probability 

[Realizable distributions] 
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Numerical Example 

[Reduced order versus     ] [Trajectories of      and         ] 

th order th order if 

Relative error of                  in       -norm: 

: dot lines 
: solid lines Validates      as 

coarseness parameter 
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Summary 

Clustering-based State Aggregation 
positive tri-diagonalization leads to         -aggregation 
controllability graman leads to        -aggregation 

Preserving interconnection topology as well as stability,  positivity 
Application to diffusion process over complex networks and CMEs 

Dynamical network 

Aggregated model 

with 

Fine 

Coarse 
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