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Abstract— In this paper, based on a notion of network
clustering, we propose a state aggregation method for positive
systems evolving over directed networks, which we call positive
networks. In the proposed method, we construct a set of
clusters (i.e., disjoint sets of state variables) according to a
kind of local uncontrollability of systems. This method preserves
interconnection topology among clusters as well as stability and
some particular properties, such as system positivity and steady-
state characteristic (steady-state distribution). In addition, we
derive anH2-error bound of the state discrepancy caused by the
aggregation. The efficiency of the proposed method is shown
through the reduction of a chemical master equation repre-
senting the time evolution of the Michaelis-Menten chemical
reaction system.

I. I NTRODUCTION

Dynamical systems evolving on large-scale networks,
whose behaviors are determined by the interaction of a num-
ber of subsystems, have been widely studied over the past
decades. Examples of the network systems include social
networks, biology networks, spread of infection; see [1] for
an overview. For such systems, it is crucial to address a
network structure preserving model reduction problem. This
structured reduction enables us to analyze coarse properties
of the given large-scale networks such as averaged behavior.

As one of possible approaches, singular perturbation-based
state aggregation techniques have been studied in, e.g., [2],
[3]. However, this kind of approach does not explicitly take
into account the effect of external inputs. Furthermore, many
kinds of structure-preserving model reduction methods have
been considered in literature. For example, the papers [4],
[5] address a model reduction problem while preserving
some underlying structure of systems such as the Lagrangian
structure and the second-order structure. However, these
problems are not formulated based on the premise of the
network structure. In addition, even though the paper [6]
has proposed a network structure preserving reduction for
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network systems, a priori knowledge on partitioning (clus-
tering) of the subsystems is required. Moreover, the relation
between partitioning and the reduction error is not discussed.

In contrast with these existing approaches, this paper
proposes a state aggregation method for positive systems
evolving on directed networks, which we call positive net-
works, based on a notion of network clustering. In this
method, we construct a set of clusters (i.e., disjoint subsets
of state variables) according to local uncontrollability of
systems. The aggregation of the constructed clusters under
suitable weights provides a reduced model that preserves
interconnection topology among clusters as well as stability
and some particular properties, such as system positivity and
steady-state characteristic. In addition, we derive anH2-
error bound of the state discrepancy caused by the aggre-
gation. The method proposed in this paper coincides with
a generalization of our state aggregation approach proposed
in [8], where systems evolving on undirected networks are
considered and the resultant aggregation error is evaluated
in terms of theH∞-norm.

Furthermore, this paper also provides an application to
the reduction of chemical master equations (CMEs), which
describe the time evolution of chemical reactions by a set of
linear ordinary differential equations. The CME expression
of chemical reactions belongs to a class of continuous-time
Markovian processes, where each state variable represents
the realization probability of a molecule distribution. The
state transition diagram can be regarded as a positive net-
work on a multidimensional lattice (see Section IV for the
details). The proposed method provides a reduced model that
preserves specific properties of the CMEs such as system
positivity and steady-state distribution.

This paper is organized as follows: In Section II, we
describe a positive system evolving on directed networks,
called positive networks, and formulate a clustering-based
state aggregation problem for this class of systems. In Sec-
tion III, using a projected controllability gramian of positive
networks, we devise a state aggregation method where we
construct clusters redundant in a suitable sense. In addition,
we provide an algorithm to construct the redundant clusters.
Section IV shows the efficiency of the proposed method by
applying it to the reduction of chemical master equations,
which belong to a class of the positive networks. Finally,
Section V concludes this paper.
NOTATION The following notation is to be used:R: the
set of real numbers,R+ (R0+): the set of positive (non-
negative) real numbers,N: the set of natural numbers,In:



the unit matrix of the sizen× n, eni : the ith column vector
of In, span(M): the range space spanned by the column
vectors of a matrixM, ∥M∥F : the Frobenius norm ofM ,
i.e.,

√
tr[MM∗], ∥M∥: the induced2-norm of a matrixM ,

i.e., the maximum singular value ofM , diag(v): the diagonal
matrix whose diagonal entries are the entries of a vector
v, Diag(M1, . . . ,Mn), the block diagonal matrix whose
diagonal blocks are composed of matricesM1, . . . ,Mn.

For a set of natural numbersI, the cardinality ofI is
denoted by|I|. Furthermore,enI ∈ Rn×|I| denotes the matrix
whose column vectors are composed ofeni for eachi ∈ I,
i.e., enI = [eni1 , . . . , e

n
im
] ∈ Rn×m for I = {i1, . . . , im}.

A matrix M (respectively, a transfer matrixG) is said
to be marginally stable if its eigenvalues (poles) are all
in the closed left-half plane, and all eigenvalues (poles)
with zero real value are simple roots. In particular,M
(respectively,G) is said to bestable if they are in the
open left-half plane. Furthermore,M is said to bereducible
if it can be placed into block upper-triangular form by
simultaneous row and column permutations. Conversely,
M is said to be irreducible if it is not reducible. Fi-
nally, the H2 and H∞-norm of a stable transfer matrix
G are denoted by∥G(s)∥H2 := (

∫∞
−∞ ∥G(jω)∥2F dω

2π )
1/2 and

∥G(s)∥H∞ := supω∈R ∥G(jω)∥, respectively.

II. PROBLEM FORMULATION

In this paper, we deal with the following positive linear
systems evolving on directed networks:

Definition 1: Define

Mn := {M = {mi,j} ∈ Rn×n : mi,j ≥ 0, ∀i ̸= j,

irreducible, marginally stable}. (1)

A linear system
ẋ = Ax+ bu (2)

is said to bepositive network(A, b) if A ∈Mn andb ∈ Rn
0+.

In this paper, for simplicity of discussion, we only deal
with single-input systems, even though the generalization to
multi-input systems is available. Furthermore, the assumption
of the irreducibility in (1) can be relaxed under a suitable
situation (see Section III-D below for the details).

This class of systems includes, e.g., spatially-discrete
reaction-diffusion systems, electric circuit systems and con-
tinuous time Markovian processes. The state trajectory of
these systems does not escape from the non-negative orthant,
i.e., Rn

0+, under any non-negative input signals and initial
conditions. Systems having such a non-negative property,
called positive systems, often appear in ecology, industrial
engineering and socio-economics [9], [10]. ForA = {ai,j}
andb = {bi}, Fig. 1 depicts the interconnection topology of
states (network structure) of positive networks.

In matrix theory, the largest real part eigenvalue of the
Metzler matrices is called the Frobenius eigenvalue, and the
associated eigenvector is called the Frobenius eigenvector,
whose entries are all non-negative [9], [10]. In what follows,
λF (M) denotes the Frobenius eigenvalue ofM ∈ Mn.
Furthermore,vl(M) ∈ R1×n

0+ and vr(M) ∈ Rn
0+ denote the

Fig. 1. Depiction of Positive Networks (ai,j ≥ 0, i ̸= j).

left and right Frobenius eigenvectors such that∥vl(M)∥ =
∥vr(M)∥ = 1. First, we state the following lemma that sums
up the properties ofA ∈Mn:

Lemma 1:Any A ∈ Mn is equipped with the following
properties:

• the Frobenius eigenvalueλF (A) is simple and real
• the entries of both left and right Frobenius eigenvectors

are all positive, i.e.,vTl (A), vr(A) ∈ Rn
+

• A has no eigenvalue on the imaginary axis except the
origin.

This lemma ensures that ifA ∈ Mn has the zero-
eigenvalueλF (A) = 0, its left and right eigenspaces are
necessarily one-dimensional. Furthermore, define

M†
n := {M ∈Mn : vr(M) = vTl (M)}.

The following diagonal transformation is to be useful for
system analyses:

Lemma 2:GivenA ∈Mn, define

D :=
[
diag−1 (vr(A)) diag(v

T
l (A))

] 1
2 . (3)

Then,DAD−1 ∈M†
n holds.

This lemma guarantees that anyA ∈ Mn is diagonally
similar to DAD−1 ∈ M†

n. Note thatDAD−1 has a same
network topology (Boolean structure) as that ofA. The match
of the left and right Frobenius eigenvectors ofA ∈ M†

n

works important roles in the following arguments. Based on
this lemma, we, as necessary, assumeA ∈M†

n without loss
of generality. Next, in order to formulate a clustering-based
state aggregation problem, we give the following definition:

Definition 2: Let (A, b) be a positive network. The family
of an index set{I[l]}l∈L for L := {1, . . . , L} is called a
cluster set(its element is referred to as a cluster) if each
elementI[l] is a disjoint subset of{1, . . . , n} and it satisfies∪

l∈L I[l] = {1, . . . , n}. Furthermore, anaggregation matrix
compatible with{I[l]}l∈L is defined by

P := Diag(p[1], . . . , p[L])Π ∈ RL×n (4)

with p[l] ∈ R1×|I[l]| such that∥p[l]∥ = 1, and the permutation
matrix Π := [enI[1]

, . . . , enI[L]
]T ∈ Rn×n for enI[l]

∈ Rn×|I[l]|.
Then, theaggregated modelof (A, b) associated withP is
given by (PAPT,Pb).

The aggregation matrixP clearly satisfiesPPT = IL. This
clustering-based state aggregation represents the aggregation



Fine

Coarse

Aggregated Model

Posi!ve Network

Fig. 2. Depiction of Clustering-based State Aggregation.

of the original statex[l] ∈ R|I[l]| into the aggregated states
x̂[l] ∈ R under the aggregation weight ofp[l] ∈ R1×|I[l]|;
see Fig. 2. Let us consider recoveringx[l] ∈ R|I[l]| from
the aggregated states bypT[l]x̂[l] = (pT[l]p[l])x[l] ∈ R|I[l]|.
According to this embedding, the transfer functions of the
positive network and the aggregated model are defined by

g(s) = (sIn −A)−1b (5)

ĝ(s) = PT(sIL − PAPT)−1Pb,

respectively. In this notation, the state aggregation problem
to be considered is formulated as follows:

Problem 1: Let (A, b) be a positive network. Given a
constantϵ ∈ R+, find an aggregation matrixP in (4) such
that the aggregated model(PAPT,Pb) is a positive network
and satisfies∥g(s)− ĝ(s)∥H2 ≤ ϵ.

III. M AIN RESULTS

A. Exact Aggregation

In what follows, we only consider the case ofλF (A) = 0
because the results derived here is almost straightforwardly
applied to stable positive networks. In this situation, we are
required to take care of the stability of the error systemg− ĝ
in Problem 1. To ensure the stability of the error system, we
provide the following form of the aggregation weight:

Lemma 3:Given a positive network(A, b), assumeA ∈
M†

n. For any cluster set{I[l]}l∈L, if

p[l] :=
vl(A)e

n
I[l]

∥vl(A)enI[l]
∥
∈ R1×|I[l]|

+ , (6)

then the error systemg− ĝ associated withP in (4) is stable.

Proof: Consider a matrixq[l] ∈ R(|I[l]|−1)×|I[l]| such
that [pT[l], q

T
[l]]

T ∈ R|I[l]|×|I[l]| is unitary. DefineQ by replac-
ing p[l] in (4) with q[l] for eachl ∈ L, where we allow empty
q[l] if |I[l]| = 1. Considering the coordinate transformation
of the error system by the unitary matrix[PT,QT]T ∈ Rn×n,
we have

g(s)− ĝ(s) = Ξ(s)QTQg(s) (7)

whereΞ(s) := PT(sIL − PAPT)−1PA + In. To prove the
claim, it suffices to show thatΞ and Qg are both stable,
instead marginally stable.

First, note that the definition ofp[l] in (6) guarantees
span(vTl (A)) ⊂ span(PT). This provides

vl(A)PTP = vl(A), PTPvr(A) = vr(A), (8)

where the property ofA ∈M†
n ensures the second equality.

Using (8), we haveQvr(A) = QPTPvr(A) = 0, which im-
plies that the eigenspace of(A,Q) associated withλF (A) =
0 is unobservable. Thus, all the poles ofQg are in the open
left-half plane.

Next, we prove the stability ofΞ. Since the positivity
of p[l] ∈ R1×|I[l]|

+ holds for all l ∈ L, the off-diagonal
entries ofPAPT are all non-negative. Furthermore, using
(8), we haveλF (PAPT) = 0 and vl(PAP

T) = vl(A)P
T,

which ensure the marginal stability ofPAPT ∈ ML. In
addition, (8) providesvl(PAPT)PA = vl(A)A = 0, which
implies that the eigenspace of(PAPT,PA) associated with
λF (PAPT) = 0 is uncontrollable. Hence, all the poles ofΞ
are as well in the open left-half plane.

Lemma 3 provides a suitable aggregation weightp[l] to
guarantee the stability of the error system. This is based
on the fact that the eigenspace of(A, b) associated with
λF (A) = 0 is exactly preserved into that of(PAPT,Pb).
Next, let us consider a simple situation under which a cluster
is exactly redundant in the following sense:

Definition 3: Let (A, b) be a positive network. A cluster
I[l] is said to beredundantif there exists a scaler rational
function ĝ[l] such that

(enI[l]
)Tg(s) = pT[l]ĝ[l](s), (9)

wherep[l] is defined in (6).

This redundancy represents the linear dependence of the
transfer functions corresponding toI[l], namely the uncon-
trollability of the cluster statex[l] = (enI[l]

)Tx. In order
to characterize (9) in an algebraic manner, we introduce a
projected controllability gramian of(A, b) as shown in the
following lemma:

Lemma 4:Given a positive network(A, b), let W ∈
R(n−1)×n such that[vTl (A),W

T] ∈ Rn×n is unitary. Define
ΦW :=

∫∞
0

eWAWTτWb(eWAWTτWb)Tdτ . Then, the posi-
tive semi-definite matrix

Φ := WTΦWW ∈ Rn×n (10)

is independent of the choice ofW .

The positive semi-definite matrixΦ in (10) represents the
controllability gramian of the stable state-space of(A, b).
The positive semi-definite matrixΦ algebraically character-
izes the redundancy of clusters as follows:

Theorem 1:Given a positive network(A, b), assumeA ∈
M†

n. DefineΦ ∈ Rn×n in (10). A clusterI[l] is redundant if
and only if there exists a row vector̂ϕ[l] ∈ R1×n such that

(enI[l]
)TΦ 1

2
= pT[l]ϕ̂[l] (11)

where p[l] is defined in (6) andΦ 1
2

denotes a Cholesky
factor such thatΦ = Φ 1

2
ΦT

1
2

. Furthermore, if all clusters are

redundant, then the aggregated model(PAPT,Pb) associated
with P in (4) is a positive network and satisfies

g(s) = ĝ(s). (12)



Proof: [proof of (11) ⇔ (9)] Note that (11) holds
if and only if there existsq[l] ∈ R(|I[l]|−1)×|I[l]| such
that [pT[l], q

T
[l]]

T is unitary andq[l](enI[l]
)TΦ 1

2
= 0 holds.

Furthermore, it is also equivalent to

q[l](e
n
I[l]

)TΦ 1
2
{q[l](enI[l]

)TΦ 1
2
}T = 0.

Thus, we have∫ ∞

0

q[l](e
n
I[l]

)TeAτWTWbbTWTWeA
TτenI[l]

qT[l]dτ = 0

⇔ q[l](e
n
I[l]

)TeAtWTWb = 0, ∀t ∈ [0,∞)

⇔ q[l](e
n
I[l]

)T(sIn −A)−1WTWb = 0.

In what follows, let us prove

q[l](e
n
I[l]

)T(sIn −A)−1WTWb = q[l](e
n
I[l]

)Tg(s). (13)

Note that (9) is equivalent to the existence ofq[l] such that
(13) is equal to0. Here, vl(A)WTWb = 0 follows from
[vTl (A),W

T] being unitary and

q[l](e
n
I[l]

)Tvr(A) = q[l](e
n
I[l]

)TPTPvr(A) = 0 (14)

follows from (8). These imply that the eigenspaces of
(A,WTWb) and(A, q[l](enI[l]

)T) associated withλF (A) = 0
are uncontrollable and unobservable, respectively. Hence,
(13) follows from the elimination of the uncontrollable and
unobservable state-space.

[proof of (12)] The redundancy of all clusters implies that
Qg = 0 in (7). Hence, (12) follows.

Theorem 1 implies that the redundancy of a clusterI[l]
is characterized by the linear dependence among the row
vectors of Φ 1

2
. More specifically, the behavior ofxi is

algebraically translated into theith row vector ofΦ 1
2
. Note,

however, that the redundancy (9) or equivalently (11) is
restrictive in general. This is because, it represents a kind
of local uncontrollability such that the controllable subspace
of x[l] = (enI[l]

)Tx ∈ R|I[l]| is one-dimensional.

B. Redundancy Relaxation

In what follows, aiming at significant order reduction,
we relax (9) through its equivalent characterization of (11).
To this end, we introduce the following relaxation of the
redundancy:

Definition 4: Let (A, b) be a positive network. DefineΦ ∈
Rn×n in (10). A clusterI[l] is said to beθ-redundantif there
exists a row vector̂ϕ[l] ∈ R1×n such that∥∥∥(enI[l]

)TΦ 1
2
− pT[l]ϕ̂[l]

∥∥∥
F
≤ |I[l]|

1
2 θ, θ ∈ R+ (15)

wherep[l] is defined in (6) andΦ 1
2

denotes a Cholesky factor
such thatΦ = Φ 1

2
ΦT

1
2

.

In this definition, the constantθ represents the degree
of the redundancy (the normalization|I[l]|

1
2 is introduced

for a technical reason). Clearly, (15) includes (11), and is
equivalent to (11) ifθ = 0. Next, we propose to construct a
cluster set{I[l]}l∈L such that all clusters areθ-redundant.
This notion yields an aggregated model as shown in the
following theorem:

Theorem 2:Given a positive network(A, b), assumeA ∈
M†

n. Define Φ ∈ Rn×n in (10). If all cluster I[l] are θ-
redundant, then the aggregated model(PAPT,Pb) associated
with P in (4) is a positive network and satisfies

∥g(s)− ĝ(s)∥H2 ≤
√
α∥Ξ(s)∥H∞θ (16)

whereα :=
∑L

l=1|I[l]|(|I[l]| − 1) andΞ is defined in (7).

Proof: First, ∥g − ĝ∥H2 ≤ ∥Ξ∥H∞∥QTQg∥H2 follows
from (7). Using (13) and the fact thatΦ is the controllability
gramian of(A,WTWb), we have

∥QTQg(s)∥H2 = ∥QTQ(sIn −A)−1WTWb∥H2

= (tr[QTQΦQTQ])
1
2 = ∥QΦ 1

2
∥F .

Define ∆[l] := (enI[l]
)TΦ 1

2
− pT[l]ϕ̂[l]. Since [pT[l], q

T
[l]]

T is
unitary, we haveq[l](enI[l]

)TΦ 1
2
= q[l]∆[l], where we allow

emptyq[l] if |I[l]| = 1. Theθ-redundancy implies∥∆[l]∥F ≤
|I[l]|

1
2 θ. Thus, we have

∥QΦ 1
2
∥2F ≤

L∑
l=1

∥q[l]∥2F ∥∆[l]∥2F ≤
L∑

l=1

|I[l]|(|I[l]| − 1)θ2.

Hence, (16) follows.

This theorem shows a linear dependence between the
degree of the redundancyθ in (15) and the aggregation error
in terms ofH2-norm. This implies that we can useθ as
a design parameter to regulate the coarseness of resultant
aggregated models.

C. Cluster Construction

We give an algorithm for cluster determination. When we
construct a cluster, we first choose an indexi0, then find
indices satisfying∥∥ϕi − viv

−1
i0

ϕi0

∥∥
F
≤ θ, ∀i ∈ I[l] (17)

where ϕi ∈ R1×n denotes theith row vector ofΦ 1
2

and
vi ∈ R denotes theith entry of vl(A). The condition (17)
is a sufficient condition of (15), where we takêϕ[l] =
∥vl(A)enI[l]

∥v−1
i0

ϕi0 . Based on (17), an algorithm to make
clusters is constructed as follows: Suppose that, at thelth
step,θ-redundant clusters{I[1], . . . , I[l]} ̸= {1, . . . , n} are
constructed. At the(l+1)th step, a subsequent clusterI[l+1]

is constructed by the procedure of

(i) choosei0 ∈ {1, . . . , n}\{I[1], . . . , I[l]}, not belonging
to any cluster, and setI[l+1] = {i0}

(ii) for each i ∈ {1, . . . , n}\{I[1], . . . , I[l]}, calculate the
norm in (17)

(iii) if the norm is less thanθ, updateI[l+1] ← {I[l+1], i}.
Repeating this procedure yields a cluster set{I[l]}l∈L satisfy-
ing theθ-redundancy in (15). In this construction algorithm,
degrees of freedom for the choice ofi0 in step (i) and the
choice ofϕ̂[l] remain.



D. Generalization to a Class of Reducible Systems

In this subsection, for marginally stable positive net-
works, we consider relaxing the irreducibility assumed in
Definition 1. Note that for reducibleA, we cannot apply
the diagonal transformation in Lemma 2 because the left
and right Frobenius eigenvectors ofA have possibly zero
entries. This spoils the property in (8), fundamentally used
in Section III-A. Conversely, if once (8) is guaranteed, the
assumption ofA ∈M†

n is not required in Theorem 2.
Without loss of generality, let us assume that reducibleA

is in the form of

A =

 A1,1

...
. ..

AK,1 · · · AK,K

 ∈ Rn×n, n =

K∑
k=1

nk (18)

where the diagonal blocksAk,k ∈ Mnk
are irreducible for

all k ∈ {1, . . . ,K}. In addition, we assume that

• AK,K ∈M†
nK

, without loss of generality
• λF (A) = 0 is simple
• the entries of the left eigenvector associated withλF (A)

are all positive, i.e.,vl(A) ∈ R1×n
+ .

Though the second and third items are not necessarily trivial
for reducibleA, chemical reaction systems described by the
chemical master equation, in fact, satisfy these assumptions
(see Section IV for details). Under these assumptions, it is
readily verified thatλF (A) = λF (AK,K) = 0. In addition,
vl(A) andvr(A) are in the form ofvl(A) = [v+, vl(AK,K)]

and vr(A) = [0, vl(AK,K)]T where v+ ∈ R1×(n−nK)
+

denotes some positive row vector.
We constructθ-redundant clusters imposing a particular

constraint so as to guarantee (8). Denote the index set corre-
sponding to thekth block byNk, i.e.,Ak,k = (enNk

)TAenNk

holds for eachk ∈ {1, . . . ,K}. Let us construct clusters
separately withinN1:K−1 := {N1, . . . ,NK−1} and NK .
More specifically, we make{I[l]}l∈L such that

l0∪
l=1

I[l] = N1:K−1,
L∪

l=l0+1

I[l] = NK (19)

for some l0 ∈ L. Such a cluster set assures that the
aggregation matrix is in the form ofP = Diag(P1:K−1,PK)

where P1:K−1 ∈ Rl0×
∑K−1

k=1 nk and PK ∈ R(L−l0)×nK .
Sincevl(AK,K)PT

KPK = vl(AK,K) holds, this ensures (8).
Thus,P associated with aθ-redundant cluster set{I[l]}l∈L
satisfying (19) provides an aggregated model satisfying (16).

IV. A PPLICATION TO REDUCTION OFCHEMICAL

MASTER EQUATION

A. Chemical Master Equation

In this section, we deal with the following chemical reac-
tion system, called the Michaelis-Menten system composed
of the 4 kinds of moleculesS1, . . . , S4:

S1 + S2

c1
�
c2

S3 (20)

S3
c3→ S4 + S2,

wherec1, . . . , c3 ∈ R0+ denote the reaction rate constants.
Let us consider the situation whereN0 molecules of each
S1 andS2 are present at the initial time. In this situation, all
realizable distributions of the numbers of the molecules are
enumerated by then = n(N0) := (N2

0 + 3N0 + 2)/2 kinds
of vectors, i.e.

N0

N0

0
0

 ,


N0 − 1
N0 − 1

1
0

 ,


N0 − 2
N0 − 2

2
0

 , . . . ,


0
N0

0
N0

 ∈ N4,

where thekth entry denotes the number ofSk for eachk ∈
{1, . . . , 4}.

Hereafter, denote each realizable distribution byξi ∈ N4

for i ∈ {1, . . . , n}, and the realization probability ofξi
at the timet by xi(t) ∈ [0, 1]. Under this denotation, the
time evolution of (20) is represented by the chemical master
equation (CME)

ẋ = Ax, x(0) = [1, 0, . . . , 0]T (21)

where x := [x1, . . . xn]
T ∈ [0, 1]n and A ∈ Rn×n is

marginally stable and Metzler (see [11] for details). Note
that the initial conditionx(0) represents that the realization
probability x1(t) of ξ1 := [N0, N0, 0, 0]

T is 1 at t = 0.
Furthermore, the sum of all states constantly remains to
be 1 for all t ∈ [0,∞) because eachxi represents the
realization probability of the distributionξi. This implies
that A in (21) satisfiesλF (A) = 0 and vl(A) = [1, . . . , 1].
Moreover, due to the irreversibility of the the second reaction
in (20),A is reducible and satisfiesvr(A) = limt→∞x(t) =
[0, . . . , 0, 1]T. Fig. 3 depicts the transition diagram of the
distributions of (20) in the CME expression, where the pair
of (xi; ξi), i.e., the realization probability and the realizable
distribution, is assigned at each nodei. In this figure, the
horizontal and vertical transitions correspond to the first and
the second reaction in (20), respectively.

Remark 1: In general, the transition diagrams of chemical
reactions composed ofκ kinds of molecules are described by
a subgraph of the multidimensional latticeNκ. Furthermore,
A is marginally stable and Metzler, and is uniquely deter-
mined from chemical reactions to be considered. In addition,
it satisfies thatλF (A) = 0 is simple, vl(A) = [1, . . . , 1]
and vr(A) = limt→∞ x(t). It should be emphasized that
since the system dimension tends to be considerably large
(O(Nκ

0 )), the analytical/numerical treatments of CMEs are
not necessarily easy [11]. Thus, toward practical analyses, we
are required to construct amesoscopic modelthat describes
essential behavior of the microscopic expression in (21).

B. H2-aggregation of Chemical Master Equation

In what follows, we show the efficiency of the proposed
method through the reduction of the CME in (21). For (20),
let the reaction rate constants bec1 = 1, c2 = 0.1 and
c3 = 3. Furthermore, let the initial number of molecules be
N0 = 140, which yields then = 10011th dimensional CME.

From Fig. 4, which shows the resultant order of aggregated
models versus the value ofθ, we can see that the order of



Fig. 3. State Transition Diagram of Chemical Master Equation (ξ1 =
[N0, N0, 0, 0]T, . . . , ξn(N0) = [0, N0, 0, N0]T).
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Fig. 4. Order of Resulting Models versus Values ofθ.

aggregated models decreases asθ increases. This means that
the θ-redundancy appropriately captures the coarseness of
aggregated models. In particular, when we takeθ = 5×10−5,
the order of the aggregated model isL = 1077 and the
resultant relative error is∥g − g∥H2/∥g∥H2 = 0.0239.

Furthermore, Fig. 5 shows the state trajectory of the
original systemx ∈ Rn (the solid line,n = 10011th order)
and that of the aggregated modelPTx̂ ∈ Rn (the broken
line, L = 1077th order). We can see from this figure that the
behavior of the CME in (21) is well approximated by that of
the aggregated model. In addition, the aggregated model not
only approximates the behavior of (21), but also preserves
specific properties of the CME, namely it is equipped with
the following properties:

• the positivity of the system (non-negativity of the state
trajectory) is preserved

• the sum of all states constantly remains to be 1
• the steady-state distribution is exactly preserved
• each state of the aggregated model represents averaged

states of the original CME
where the second to fourth items are assured by (8).

V. CONCLUSION

In this paper, we have proposed a model reduction method
for positive systems evolving on directed networks, called
positive networks. In this method, we construct a set of
clusters based on a kind of local controllability of the state-
space. Aggregating the cluster set under suitable weighting,
we obtain a reduced model that preserves interconnection
topology among the clusters as well as some specific prop-
erties, such as stability, steady-state characteristic and system
positivity. Furthermore, we have derived anH2-error bound
of the state discrepancy caused by the aggregation. In ad-
dition, applying the proposed method to chemical reaction

Time
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Fig. 5. State Trajectory of Original System (the solid line, 10011th order)
and Aggregated Model (the broken line, 1077th order).

systems described by the chemical master equation, we have
obtained a mesoscopic model that well approximates the
original system as well as preserves specific properties as
the chemical master equation.
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