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Abstract—In this paper, based on a notion of network network systems, a priori knowledge on partitioning (clus-
clustering, we propose a state aggregation method for positive tering) of the subsystems is required. Moreover, the relation
systems evolving over directed networks, which we call positive petveen partitioning and the reduction error is not discussed.

networks. In the proposed method, we construct a set of | trast with th isti h thi
clusters (i.e., disjoint sets of state variables) according to a ' contrast wi ese existng approaches, this paper

kind of local uncontrollability of systems. This method preserves Proposes a state aggregation method for positive systems
interconnection topology among clusters as well as stability and evolving on directed networks, which we call positive net-

some particular properties, such as system positivity and steady- works, based on a notion of network clustering. In this
state characteristic (steady-state distribution). In addition, we method, we construct a set of clusters (i.e., disjoint subsets

derive anH2-error bound of the state discrepancy caused by the . . I~
aggregation. The efficiency of the proposed method is shown of state variables) according to local uncontrollability of

through the reduction of a chemical master equation repre- Systems. The aggregation of the constructed clusters under
senting the time evolution of the Michaelis-Menten chemical suitable weights provides a reduced model that preserves

reaction system. interconnection topology among clusters as well as stability
and some patrticular properties, such as system positivity and
|. INTRODUCTION steady-state characteristic. In addition, we derive 75
Dynamical systems evolving on large-scale network&or bound of the state discrepancy caused by the aggre-
whose behaviors are determined by the interaction of a nufation. The method proposed in this paper coincides with
ber of subsystems, have been widely studied over the pgs@€neralization of our state aggregation approach proposed
decades. Examples of the network systems include socldi[8], where systems evolving on undirected networks are
networks, biology networks, spread of infection; see [1] foFonS|dered and the resultant aggregation error is evaluated
an overview. For such systems, it is crucial to address '3 t€rms of the#-norm. _ o
network structure preserving model reduction problem. Thig Furthermore, this paper also provides an application to
structured reduction enables us to analyze coarse proper§ reduction of chemical master equations (CMEs), which
of the given large-scale networks such as averaged behavid¢Scribe the time evolution of chemical reactions by a set of
As one of possible approaches, singular perturbation-basi¥ggar ordinary differential equations. The CME expression
state aggregation techniques have been studied in, e.g. chemical reactions belongs to a class of continuous-time
[3]. However, this kind of approach does not explicitly takgViarkovian processes, where each state variable represents
into account the effect of external inputs. Furthermore, marfjf réalization probability of a molecule distribution. The

kinds of structure-preserving model reduction methods haveale transition _d!agran_w can be_ regarded as a positive net-
been considered in literature. For example, the papers [ ork on a multidimensional lattice (see Section IV for the

[5] address a model reduction problem while preservin etails). The proposed method provides a reduced model that

some underlying structure of systems such as the LagrangiBfgServes specific properties of the CMEs such as system
structure and the second-order structure. However, theB@Sitivity and steady-state distribution. _
problems are not formulated based on the premise of theTh'_S paper |§_organ|zed as fO_HOWS' In_ Section Il, we
network structure. In addition, even though the paper | escribe a .posmve system evolving on directed _networks,
has proposed a network structure preserving reduction fopil€d Positive networks, and formulate a clustering-based
state aggregation problem for this class of systems. In Sec-
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the unit matrix of the sizex x n, e': the ith column vector

of I,,, span(M): the range space spanned by the column
vectors of a matrixM, ||M | r: the Frobenius norm ofi/,

i.e., \/tr[MM*], | M|: the induced2-norm of a matrix/,

i.e., the maximum singular value &1, diag(v): the diagonal
matrix whose diagonal entries are the entries of a vector

Z;

/
2N

v, Diag(M,...,M,), the block diagonal matrix whose
diagonal blocks are composed of matrides, ..., M,,. s
. . . bi4-2,i+2
For a set of natural numbers, the cardinality ofZ is
denoted by Z|. Furthermoreg? € R™*IZl denotes the matrix Fig. 1. Depiction of Positive Networksi{ ; > 0, i # ).
whose column vectors are composedepffor eachi € Z,
ie.,en = [er en 1 e R™m for T = {i; im} left and right Frobenius eigenvectors such that(M)| =
, e yeees T

A matrix M (respectively, a transfer matrig) is said [lv-(M)|| = 1. First, we state the following lemma that sums
to be marginally stableif its eigenvalues (poles) are all Up the properties off € M,
in the closed left-half plane, and all eigenvalues (poles) Lemma 1:Any A € M,, is equipped with the following
with zero real value are simple roots. In particuldd properties:

(respectively,G) is said to bestab_le if _they are in _the « the Frobenius eigenvalugs(A) is simple and real

open left-half plane. Furthermor@/ is said to beeducible , the entries of both left and right Frobenius eigenvectors
if it can be placed into block upper-triangular form by are all positive, i.e.p] (A),v,(A) € R?

simultaneous row and column permutations. Conversely, , A nas no eigenvalue on the imaginary axis except the
M is said to beirreducible if it is not reducible. Fi- origin.

nally, the #, and H..-norm of a stable transfer matrix . ]
G are denoted by G(s)|#, := (/> [|G(jw)|%%)!/2 and This lemma ensures that it € M, has the zero-

1G() |12 = sup,cr |G(jw)]|, respectively. eigenvalueAr(A) = 0, its left and right eigenspaces are
necessarily one-dimensional. Furthermore, define

Ml = {M e M, :v.(M) =v] (M)}

Il. PROBLEM FORMULATION
In this paper, we deal with the following positive linear

systems evolving on directed networks: The following diagonal transformation is to be useful for
Definition 1: Define system analyses:
M, = {M = {mi;} € RV :m;; >0, Vi # , Lemma 2:Given A € M,,, define
. . . 1
irreducible, marginally stable}. (1) D= [diag_l (v,(A)) diag(v;r(A))] 2 (3)
A linear system Then,DAD~! € M, holds.
&= Az + bu (2)

This lemma guarantees that any € M,, is diagonally
is said to bepositive networK A, b) if A € M,, andb € Ry, .  similar to DAD~! € M,. Note thatDAD~! has a same
In this paper, for simplicity of discussion, we only dealnetwork topology (Boolean structure) as thatofThe match
with single-input systems, even though the generalization & the left and right Frobenius eigenvectors 4f € M,
multi-input systems is available. Furthermore, the assumptidhorks important roles in the following arguments. Based on
of the irreducibility in (1) can be relaxed under a suitabldhis lemma, we, as necessary, assufne Mj, without loss
situation (see Section I1I-D below for the details). of generality. Next, in order to formulate a clustering-based
This class of systems includes, e.g., spatially-discre@ate aggregation problem, we give the following definition:
reaction-diffusion systems, electric circuit systems and con- Definition 2: Let (4, b) be a positive network. The family
tinuous time Markovian processes. The state trajectory of an index set{Zy};c. for L := {1,...,L} is called a
these systems does not escape from the non-negative orthahister set(its element is referred to as a cluster) if each
i.e., R{,, under any non-negative input signals and initiaelementZ; is a disjoint subset of1,...,n} and it satisfies
conditions. Systems having such a non-negative property),.; Z;; = {1,...,n}. Furthermore, amggregation matrix
called positive systems, often appear in ecology, industrigompatible with{Zy}c. is defined by
engineering and socio-economics [9], [10]. Bbr= {a; ;}

— 1) Lxn
andb = {b;}, Fig. 1 depicts the interconnection topology of P := Diag(ppyj,...,pr)H € R (4)
states (network structure) of positive networks. with py; € RYXIZwl sych that|py|| = 1, and the permutation
In matrix theory, the largest real part eigenvalue of the, iy 1 .— [e2 en T € R™7 for e € R*I17nl
1’7" L 1 :

Metzler matrices is called the Frobenius eigenvalue, and the, . - theaggregated modebf (A, b) associated wittP is
associated eigenvector is called the Frobenius eigenvectaf\,/en’ by (PAPT, Pb) ’

whose entries are all non-negative [9], [10]. In what follows;
Ar(M) denotes the Frobenius eigenvalue &f € M,,. The aggregation matriR clearly satisfie®P" = I, . This
Furthermorey; (M) € R(l)i" andv,(M) € R, denote the clustering-based state aggregation represents the aggregation



Coarse where the property ot € M! ensures the second equality.
Agaregated Model Using (8), we haveQu,(A) = QPTPvT(A) = 0, which im-
(PAPT, Pb) pl!es that the eigenspace @f, Q) associated Wllth\F(A) =
’ 0 is unobservable. Thus, all the poles@§ are in the open
left-half plane.
Next, we prove the stability oE. Since the positivity
Positive Network of py € ]R{ix‘z[”' holds for alll € L, the off-diagonal
0 (A,b) entries of PAPT are all non-negative. Furthermore, using
(8), we haverr(PAPT) = 0 and v;(PAPT) = v;(A)PT,
Fig. 2. Depiction of Clustering-based State Aggregation. which ensure the marginal stability (fAPT € M. In

addition, (8) provides;(PAPT)PA = v;(A)A = 0, which

implies that the eigenspace @PAPT,PA) associated with
Ty . —_
see Fig. 2. Let us consider recovering, e RIZu! from Ar(PAP )7. 0 is uncontrollable. Hence, all the poles &f
. T IZul| are as well in the open left-half plane. ]
the aggregated states Xy = (pmpm)x[l] e R+l ] ] . )
According to this embedding, the transfer functions of the Lemma 3 provides a suitable aggregation weigft to

positive network and the aggregated model are defined byguarantee the stability of the error system. This is based
g(s) = (s, — A)~1b ) On the fact that the eigenspace @A,b) associated with

) T 1 Ar(A) = 0 is exactly preserved into that gPAPT, Pb).

g(s) =P (slp — PAP")"'Pb, Next, let us consider a simple situation under which a cluster

respectively. In this notation, the state aggregation problef €xactly redundant in the following sense:

to be considered is formulated as follows: Definition 3: Let (A,b) be a positive network. A cluster
Problem 1: Let (A,b) be a positive network. Given a Iy is said to beredundantif there exists a scaler rational

of the original stater|; € RIZul into the aggregated states
%y € R under the aggregation weight of; € R*Zul;

constante € R, find an aggregation matriR in (4) such functiongy such that

that the aggregated mod@ APT, Pb) is a positive network en \T — ol &in(s 9

and satisfieg|g(s) — 8(s) |, < c. (e2,)"9(5) = Pukin =), ®)
wherep; is defined in (6).

I1l. M AIN RESULTS This redundancy represents the linear dependence of the
A. Exact Aggregation transfer functions corresponding %, namely the uncon-
trollability of the cluster stater = (egm)Taz. In order

In what follows, we only consider the case x# (4) =0 characterize (9) in an algebraic manner, we introduce a
because the results derived here is almost straightforwara%& 9 ’

applied to stable positive networks. In this situation, we ar oﬁg\e;itnedlggan:;llab”'ty gramian ofA,b) as shown in the
required to take care of the stability of the error sysiemg 9 o N
in Problem 1. To ensure the stability of the error system, we('—erlr)‘ina 4:Given a DOS'“V$ netwcirk(.A, b), let W' ¢
provide the following form of the aggregation weight: R nOOSUSJ‘AtVDQt[Uz (A)V;/ZVW]T € R"T" is unitary. Define
Lemma 3:Given a positive networkA, b), assumed € W = fodef. T TWh(e W) dr. Then, the posi-
Mi,. For any cluster setTy }rcr., if tive semi-definite matrix
n P :=WTdyW e R (10)
— vl(A)eI[l] c IX‘I[lll (6)
P [oi(A)ez, |l * ’ is independent of the choice &¥.
0
then the error system_ & associated witl? in (4) is stable The positive semi-definite matri® in (10) represents the
ystem—eg ass( * controllability gramian of the stable state-space (df. b).
Proof: Consider a matrixqy € R(Fwl=1*Zul such  The positive semi-definite matri® algebraically character-
that [p( qéT”]T € RFwl*IZul is unitary. DefineQ by replac- izes the redundancy of clusters as follows:
ing pp in (4) with gy for eachi € I, where we allow empty  thegrem 1:Given a positive networkA, b), assumed €
qq if |Zyy| = 1. Considering the coordinate transformation,(+ pefine® ¢ R™*" in (10). A clusterZy, is redundant if
of the error system by the unitary matfix™, QT]T € R"*" w - - ' s’
’ ' and only if there exists a row vector; € R*™ such that

we have

9(s) — &(s) = =()Q"Qg(s) @) (e2,)7@, = phdu (12)
whereZ(s) := PT(sI, — PAPT)"'PA + I,,. To prove the where p; is defined in (6) and®; denotes a Cholesky
claim, it suffices to show thaE and Qg are both stable, factor such thatb = &, ®1. Furthermore, if all clusters are

instead marginally stable. _ redundant, then the aggrégated madellPT, Pb) associated
First, note that the definition op; in (6) guarantees \uith p in (4) is a positive network and satisfies
span(v] (A)) C span(PT). This provides )
9(s) = &(s). (12)

u(A)PTP = u(4), PTPu(A) =, (A), (8)



Proof:  [proof of (11) & (9)] Note that (11) holds = Theorem 2:Given a positive networkA, b), assumed €
if and only if there existsqy ¢ R(Zwl=1)xIZul gych M} Define® € R™" in (10). If all clusterZy, are ¢-
that [py,afy]™ is unitary andq[g](e%m)T% — 0 holds. redundant, then the aggregated madredlP T, Pb) associated

2

l
Furthermo[r(]e, it is also equivalent to with P in (4) is a positive network and satisfies

any(ez,) @1 {ap(ez, )T @1}T =0. l9(s) — &(5) 2 < Va|E(s)]l20 (16)
Thus, we have L ] ] )
wherea := ;2 |Z|(|Zyy| — 1) and = is defined in (7).

Proof: First, |lg — &ll#, < |IZ]lx.|QTQg|l3, follows
from (7). Using (13) and the fact that is the controllability
gramian of(A, WTWb), we have

oo
T n
/0 au(e,) eTWTWOTWTWer et qidr =0

& qulez,) e WTWh =0, Vi € [0,00)
& quler,)T(sI — A WTWh = 0.
1QTQg(s)[l7, = QT Qs — A) "' W TWb]3,

In what follows, let us prove )
= (rQTQeQTQ))> = [|Q®, ||r-

apy(ez,)" (sIn — A) T WTWb = q(ez, ) Tg(s).  (13)

Note that (9) is equivalent to the existenceqqf such that Define Ay := (e )T®1 — pfydy. Since [pjy,qf]" is
(13) is equal to0. Here, v;(A)WTWb = 0 follows from  unitary, we haveq (egm)T@% = qupAp, where we allow
[v] (A), WT] being unitary and emptyqy if [Z;| = 1. Thed-redundancy implie§ Ay || r <

ap (e%[l])Tvr(A) =qq (egm)TPTPvT(A) =0 (14) |I[l]‘§0 Thus, we have

follows from (8). These imply that the eigenspaces of , L , , L ,
(A, WTWb) and(A, qp (e, )7) associated withp(4) =0 [[QP4[[F < D laplFlAgls <> 1Tl (1Zy| - 16>
are uncontrollable and unobservable, respectively. Hence, 1=1 I=1

(13) follows from the elimination of the uncontrollable and
unobservable state-space.

[proof of (12)] The redundancy of all clusters implies that This theorem shows a linear dependence between the
Qg = 0 in (7). Hence, (12) follows. m degree of the redundandyin (15) and the aggregation error

in terms of Hy-norm. This implies that we can ugek as
design parameter to regulate the coarseness of resultant
aggregated models.

Hence, (16) follows. ]

Theorem 1 implies that the redundancy of a clustgr
is characterized by the linear dependence among the r
vectors of<1>%. More specifically, the behavior of; is
algebraically translated into thigh row vector of®.. Note,
however, that the redundancy (9) or equivalently (11) i&. Cluster Construction
restrictive in general. This is because, it represents a kind,y, give an algorithm for cluster determination. When we

of local uncontrollability such that the controllable subspacgonstruct a cluster, we first choose an indgx then find
— T T H H H ]
of zy = (ez,) Tz € RIZul is one-dimensional. indices satisfying

B. Redundancy Relaxation

In what follows, aiming at significant order reduction,

we relax (9) through its equivalent characterization of athereqﬁ» c R*" denotes theith row vector of®: and

:;dtzt::SaiZS', we introduce the following relaxation of thevl_ € R denotes theth entry of vj(A). The conditngn a7

o N ] is a sufficient condition of (15), where we takg; =
Deﬁ_nmon 4: Let (A,b) bg a positive network. Dgflnré € Hvz(A)e%m |‘Ui_01¢i0_ Based on (17), an algorithm to make
R in (10). A clusterZy, '15 said to bef-redundantf there  ¢ysters is constructed as follows: Suppose that, at/tie
exists a row vectot;; € R**" such that step, 9-redundant cluster§Zy,...,Zy} # {1,...,n} are

n AT T 1 constructed. At the/ + 1)th step, a subsequent clus®y,

H(efm) oy - p[l]¢[l]HF < [Zwl=0, 0 € Ry (15)  is constructed by the procedure of
wherep; is defined in (6) an@% denotes a Cholesky factor (i) chooseig € {1, .. -n\{Zp), ..., Iy}, not belonging
such thatd = ¢, ®!. to any cluster, and séf; 1) = {io}
2 3

In this definition, the constant represents the degree (i) for €achi € {1,....n}\{Zpy,..., Iy}, calculate the
of the redundancy (the normalizatigfy|# is introduced __ NOM N (17 ,
for a technical reason). Clearly, (15) includes (11), and @) if the norm is less thad, updateZy 1) < {Zji41), i}
equivalent to (11) iff = 0. Next, we propose to construct a Repeating this procedure yields a cluster{sgf } 1. satisfy-
cluster set{Z;; };c1. such that all clusters ar@é-redundant. ing thefd-redundancy in (15). In this construction algorithm,
This notion yields an aggregated model as shown in th#egrees of freedom for the choice @f in step (i) and the
following theorem: choice ofq@m remain.

o — Uivi_ol¢i0|’F <40, VielIy (17)



D. Generalization to a Class of Reducible Systems wherecy, ..., c3 € Ryy denote the reaction rate constants.
In this subsection, for marginally stable positive netLet us consider the situation wheré, molecules of each

works, we consider relaxing the irreducibility assumed i1 and S, are present at the initial time. In this situation, all
Definition 1. Note that for reducibled, we cannot apply realizable distributions of the numbers of the molecules are

the diagonal transformation in Lemma 2 because the lefhumerated by the = n(No) := (N§ + 3No + 2)/2 kinds
and right Frobenius eigenvectors df have possibly zero Of VEctors, i.e.

entries. This spoils the property in (8), fundamentally used N, Ny —1 Ny —2 0
in Section IlI-A. Conversely, if once (8) is guaranteed, the| N, Ny —1 Ny —2 Ny N4
assumption ofd € M is not required in Theorem 2. 0o |’ 1 ’ 2 SRR R B
Without loss of generality, let us assume that reducible 0 0 0 Ny
is in the form of where thekth entry denotes the number 8f, for eachk €
Ary K {1,...,4}.
A= L ER™™ n= an (18) Hereafter, denote each realizable distributionépye N*
Aga - Agx k=1 for i € {1,...,n}, and the realization probability of;

. _ . at the timet by z;(t) € [0,1]. Under this denotation, the
where the diagonal blockd, , € M,,, are irreducible for time evolution of (20) is represented by the chemical master
all k € {1,...,K}. In addition, we assume that equation (CME)

o Ak € MLK, without loss of generality

R _ T
« Ar(4) =0 is simple &= Az, z(0)=][1,0,...,0] (22)
« the entries of the left eigenvector associated Wittt A)  where z = [z1,...2,]T € [0,1]* and A € R™" is
are all positive, i.e.p;(A4) € RY*". marginally stable and Metzler (see [11] for details). Note

Though the second and third items are not necessarily trivitiiat the initial conditionz(0) represents that the realization
for reducible A, chemical reaction systems described by thgrobability z;(t) of & := [Ny, No,0,0]" is 1 att = 0.
chemical master equation, in fact, satisfy these assumptiohgrthermore, the sum of all states constantly remains to
(see Section IV for details). Under these assumptions, it Be 1 for allt < [0,00) because eack; represents the
readily verified that\r(A) = Ap(Ak x) = 0. In addition, realization probability of the distributios;. This implies
v (A) andv,.(A) are in the form ofv;(A) = [vy,v(Ak k)] that A in (21) satisfies\p(A) = 0 and v (A4) = [1,...,1].
and v,.(A) = [0,u(Ak x)]T where v, ¢ Rf(“*”ﬂ Moreover, due to the irreversibility of the the second reaction
denotes some positive row vector. in (20), A is reducible and satisfies(A) = limtﬁoox(t) =

We constructd-redundant clusters imposing a particulad0; - - -,0,1]". Fig. 3 depicts the transition diagram of the
constraint so as to guarantee (8). Denote the index set corféstributions of (20) in the CME expression, where the pair
sponding to thekth block by A, i.e., Ay, = (eh)TAeﬁ/» of (z;;&), i.e., the realization probability and the realizable

k

holds for eachk € {1,...,K}. Let us construct clusters distribution, is assigned at each nodeln this figure, the
separately within\Vy.x_1 := {Ni,...,Nx_1} and Nk. horizontal and vertical transitions correspond to the first and
More Speciﬁca”y' we makéz[l]}IE]L such that the second reaction in (20), reSpeCtiVEly.
o . Remark 1:In general, the transition diagrams of chemical
U Ty = Mk -1, U Ty = N (19) reactions composed afkinds of molecules are described by

a subgraph of the multidimensional lattid®. Furthermore,

A is marginally stable and Metzler, and is uniquely deter-
for some iy € L. Such a cluster set assures that thenined from chemical reactions to be considered. In addition,
aggregation matrix is in the form & = Diag(P1.x—1,Px) it satisfies that\x(4) = 0 is simple,v;(4) = [1,...,1]
where Py € R'O*Zi—r ™ and Px € RETIOME angy (4) = limy_,. z(¢). It should be emphasized that
Sincev;(Ak k)PP = vi(Ak k) holds, this ensures (8). since the system dimension tends to be considerably large
Thus, P associated with @-redundant cluster setZj; }ie.  (O(Ng)), the analytical/numerical treatments of CMEs are
satisfying (19) provides an aggregated model satisfying (16)ot necessarily easy [11]. Thus, toward practical analyses, we
are required to construct mesoscopic modé¢hat describes
essential behavior of the microscopic expression in (21).

=1 I=lo+1

IV. APPLICATION TOREDUCTION OF CHEMICAL
MASTER EQUATION
A. Chemical Master Equation B. H,-aggregation of Chemical Master Equation

In this section, we deal with the following chemical reac- N what follows, we show the efficiency of the proposed
tion system, called the Michaelis-Menten system composd@€thod through the reduction of the CME in (21). For (20),

of the 4 kinds of molecules, ..., Sy: let the reaction rate constants be = 1, ¢ = 0.1 and
. c3 = 3. Furthermore, let the initial number of molecules be
S1 + So <:>1 Ss (20)  No = 140, which yields then = 10011th dimensional CME.
c2 From Fig. 4, which shows the resultant order of aggregated

S; B Sy + 5, models versus the value éf we can see that the order of
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Fig. 5. State Trajectory of Original System (the solid line, 10011th order)
and Aggregated Model (the broken line, 1077th order).

systems described by the chemical master equation, we have
obtained a mesoscopic model that well approximates the
original system as well as preserves specific properties as
the chemical master equation.
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aggregated models decreased &screases. This means that
the f-redundancy appropriately captures the coarseness
aggregated models. In particular, when we téke 5x 105,
the order of the aggregated model is= 1077 and the
resultant relative error i§g — gl /|lgll#, = 0.0239.

Furthermore, Fig. 5 shows the state trajectory of the
original systemz € R™ (the solid line,n = 10011th order)
and that of the aggregated modelx € R™ (the broken
line, L = 1077th order). We can see from this figure that the
behavior of the CME in (21) is well approximated by that of [2
the aggregated model. In addition, the aggregated model not
only approximates the behavior of (21), but also preserve$l
specific properties of the CME, namely it is equipped with
the following properties:

« the positivity of the system (non-negativity of the state

trajectory) is preserved [5]

« the sum of all states constantly remains to be 1

. the steady-state distribution is exactly preserved (6]

« each state of the aggregated model represents averaged

states of the original CME [7]

where the second to fourth items are assured by (8).

(1]

(4]

V. CONCLUSION 8]

In this paper, we have proposed a model reduction method
for positive systems evolving on directed networks, called
positive networks. In this method, we construct a set of[g]
clusters based on a kind of local controllability of the state-
space. Aggregating the cluster set under suitable Weightin[go]
we obtain a reduced model that preserves interconnection
topology among the clusters as well as some specific prop-
erties, such as stability, steady-state characteristic and syst
positivity. Furthermore, we have derived afy-error bound
of the state discrepancy caused by the aggregation. In ad-
dition, applying the proposed method to chemical reaction

Technology (FIRST Program),” initiated by the Council for
So(fience and Technology Policy (CSTP). This research is also
supported by Grant-in-Aid for JSPS Fellows. The authors
would like to thank D. Cheong from Tokyo Institute of
Technology for fruitful discussion.
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