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Abstract— This paper proposes a model reduction method for attempt to address this problem by means of an input-to-
a multi-input linear system evolving on large-scale complex net- - state mapping approximation using transformation matrices
works, called dynamical networks. In this method, we construct on which a suitablesparsityis imposed.

a set of clusters (i.e., disjoint subsets of state variables) based on A lated studi truct . d ducti
a notion of clusterwise controllability that characterizes a kind S relaled studies, structure preserving moce reduction

of local controllability of the state-space. The clusterwise con- Problems have been discussed in various literature [8], [9],
trollability is determined through a basis transformation with ~ [10]. However, these problems are not formulated based
respect to each input. Aggregating the constructed clusters, we on the premise of the network structure preservation even
obtain a reduced model that preserves interconnection topology though they consider the preservation of some underlying
of the clusters as well as some particular properties, such as .

stability, steady-state characteristic and system positivity. In structure of systems, such as the Lagrangian structure and
addition, we derive an Ho.-error bound of the state discrepancy the second-order structure. Furthermore, the paper [8], where
caused by the aggregation. The efficiency of the proposed a network structure preserving model reduction problem is
method is shown by a numerical example including a large- considered, does not discuss the relation between partition
scale complex network. of subsystems and the resultant approximation error.
Against such a background, we have proposed in [11]

, a network structure preserving model reduction method
Dynamical systems on large-scale complex networkgenyork clustering method) for single-input dynamical net-

(large-scale dynamical networks), whose behavior is dgjorks. In this method, we construct a set of clusters (i.e.,
scribed by an interaction of a large number of interconnectegls;oint subsets of state variables) based on a notion of cluster
subsystems, have been widely studied over the past decadgsycibility that coincides with a kind of local uncontrollabil-
Examples of such dynamical networks mcludel Worlg—Wldel-ty of the state-space of the dynamical networks. Aggregating
Web, gene regulatory networks, spread of infection; S&ge clyster set under suitable weighting, we obtain a reduced
[1], [2], [3], [4] for an overview. In general, due to their poqe| that preserves interconnection topology of the original
large-scale complex network topology, the straightforwardystem as well as some specific properties, such as stability,
application of traditional analysis and design methods isteady-state characteristic and system positivity. In addition,

often unrealistic. Therefore, model reduction is indispensab{;‘-;e have derived aiil.. -error bound of the state discrepancy
for overcoming such a difficulty; see [5], [6], [7] for survey .5,sed by the aggregation.

articles. _ ~ This paper extends the network clustering scheme for
The balanced truncation, the Hankel-norm approximatiogingle-input systems [11] to that for multi-input systems. To
and the Krylov projection, which are well-known as tradi-yhis end, transforming the basis of its state-space with respect
tional model reduction methods, provide a reduced Modg} each input, we derive a necessary and sufficient condition
suitably approximating the input-to-output mapping of &y the cluster reducibility, which is the converse concept
given system [S], [6]. However, these traditional reductiony¢ cjysterwise controllability. This basis transformation is
methods have a common drawback in applying to dynamicghseq on tri-diagonalization of the system matrices, whose
networks; The interconnection structure among the originglngamental properties are useful for constructing reducible
states is lost through the reduction. More specifically, eact) sters. Furthermore, we introduce more general formula-

state of the reduced model is usually obtained by thgon of weak cluster reducibility suitable for establishing a
linear combination of all the states of the original SyStemcIustering scheme for the multi-input systems.
namely the transformation matrix for reduction dense This paper is organized as follows: In Section I, we

For dynamical networks, @t is more importz_:mt to address gescribe a linear system evolving on complex networks
network structure preserving model reduction problem. Wg.q formulate a network clustering problem for this class
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I. INTRODUCTION



Section IV concludes this paper.
NOTATION The following notation is to be used:

R (Ry) the set of (positive) real numbers

I, the unit matrix of the sizex x n

ey the kth column vector off,,

€hy ke the k;th to koth columns ofi,

span (M) the space spanned by the column

vectors of a matrixi/
|M|| = omax (M) the maximum singular value of a
matrix M
diag (v) the diagonal matrix whose diagonal
entries are the entries of a vector
Diag (My,...,M,) the blo_ck-diagonal matrix composeq:ig. 1
of matricesMy, ..., M,
The H..-norm of a stable proper transfer matrix(s) is  whereby, := [bi,...,b,]" € R™. This class of systems is
defined by [|G(s)|., := Sup,er Tmax (G (jw)). For a set stable ifr; > 0 holds for at least oné, a;; > 0 holds for
T of the natural numberdZ| denotes the cardinality g, all i # j, and L is irreducible.
and e € R™*IZl denotes the matrix whose column vectors In what follows, we formulate a network structure preserv-
are composed of? for k € Z (in some order oft), i.e., ing model reduction problem (network clustering problem).

Depiction of Dynamical Systems Evolving on Complex Network.

et =[ep,....ep | €eR™™mfor T ={ky,... . kn}. First, the following notion of network clustering is defined:
Definition 2: Let (A, B) be a dynamical network. The
Il. PRELIMINARY family of an index se{Zy };cr for L := {1,..., L} is called
A. Problem Formulation a cluster set(its element is referred to as a cluster) if each
elementZ;; is a disjoint subset of1,...,n} and it satisfies

This paper deals with a linear system evolving on IargeUl Iy = {1,...,n}. Furthermore, amggregation matrix
scale complex networks whose general form is defined %anpatible with{Z;; } 11, is defined by

follows:

Definition 1: A linear system . A L
P := Diag (p1), - .-, pr) IT € R2*™, AI=Z51 4)
T = Ax + Bu 1) =1

with A € R**" and B € R"*™ is said to be alynamical With p; € R‘SZX'IU_” such thatd, < |Z;| and PuPg = L.,

network (4, B) if A is stable and symmetric. Moreover, if and the permutation matrix

the off-diagonal entries ofA and the entries ofB are all i n 1T nxn .n nx |y

non-negative, it is said to be @ositivedynamical network. = [ez[l],...,ezm] €R » ey € R - 0
Let us see the following (spatially-discrete) reactionThen, theaggregated modedf (A, B) associated witlP is

diffusion system evolving on a complex network, of pargiven by

ticular interest in this paper: (PAPT7 pB) ) (6)

This aggregated model is constructed by projecting the
controllable subspace df4, B) onto span(PT). Note that
PPT = I, holds andPAPT is stable and symmetric.
for i € {1,...,n} wherer; > 0 denotes the intensity of For this network clustering, we give the following intuitive
the reaction (chemical dissolution) af;, anda; ; = a;; explanation: There ard clusters labeled by € L, and
for i # j denotes the intensity of the diffusion between each node of the original network belongs to exactly one
andz;; see Fig. 1. This system is known as a basic modeif the clusters. On the other hand, the number of clusters
that represents a diffusion process evolving over complar the aggregated model is the same as that in the original

n m
gi=—rmi+ Y aig(y—m) Y biguk (2)
=15 k=1

networks (see [12]). The interaction topology of (2) can bsystem. Letr) := (egm)Tx e RZul denote the state of
represented in a graph theoretic fashion: By defining thihe ith cluster. The linear transformation performed by the
reaction matrixR := diag([ry,---,7,]) and the symmetric aggregation matrix (4) implies;; = pyjzy; for I € L. where
weighted graph Laplaciag := {i; ;} for X € R% is an aggregated state of the cluster. We can
o see that this transformation represents the aggregation of the
L, = { AN 7J o original statez; € RIZul into the aggregated ong; € R?
7 2=t Gings 1=, under the weighting opy € R%*I7ul. Consequently, the

the system (2) is represented as a dynamical network Wimterconnection topology (spatie_al distributi_on) of the states
the state vector := [z, .,:l:n]T c R™ and is preserved through the reduction; see Fig. 2.

In what follows, we derive a condition that; behaves
A=—(R+ L), B=1b1,...,bn) (3) similarly to zj; in a suitable sense. From a model reduc-



L, R This proposition shows the existence condition of the
] ] positive tri-diagonalization and relates the range spacH of
Aggregated Model to theith dimensional controllable sub-space(df, b). Note
(PAP,PB) that there exists a positive tri-diagonalizing matiif, for
each(A, b;) thanks to the supposition of in Definition 1.
Proposition 2: Given a positive tri-diagonal paif2, b)

Coarse
Ul ‘

=Tk Dynam(iif'g?twork with a stable, define®’(s) := (e})"(sI, —21)~'b. Then,
O] Fine T 2 ’ the relative degree af’ is i, and
Fig. 2. Depiction of Network Clustering. ||Q§l (5)”00 =& (0) (10)
tion point of view, a smallew; is desirable to reduce the holds for alli € {1,...,n}.
dimension of dynamical networks. This proposition shows tha$* (i.e., the transfer function

Hereafter, the transfer function from the input to the alfrom the input to theith state in the linear systeif, b))
state variables in the dynamical network (1) and that of thieas the low-pass property represented by (10). This property
aggregated model (6) are denoted by is useful for deriving anH.-error bound in Section III.

1 Remark 1:The tri-diagonalization procedures of large
g(s) = (sl — A) " B, ) (") matrices have been widely investigated in, e.g., numerical
g(s) :== PT (sIn—PAPT) " PB, algebra community toward various applications, such as
gigenvalue computations [5]. In particular for symmetric
matrices, unitary transformations are often used to pre-
serve the symmetry. It should be emphasized that the tri-
diagonalization procedures do not require computationally
expensive operations as discussed in various literature [5],
[7], [14]. Especially for sparse matrices, such as the graph
lg(s) —&(s)lloo <€ Laplacian of complex networks, the numerical efficiency
stands out. In this sense, the positive tri-diagonalization can

B. Positive Tri-Diagonalization ) .
) ) ... be implemented even for large-scale dynamical networks.
In this paper, we make use of the following matrix tri-

diagonalization to investigate the behavior of clusters: 1. NETWORK CLUSTERING
Definition 3: Let A € R™*" be a matrix andb € R" A E v Reducible C
a vector. A unitary transformation byf € R"*" is said - Exactly Reducible Case

respectively. Then, the network clustering problem to b
addressed is formulated as follows:

Problem 1: Let (A, B) be a dynamical network. Given
a constante € R, find an aggregation matri® in (4)
compatible with{Zy;},cL. such that

to be positive tri-diagonalizatiorof the pair (A, b) if 2 := In order to address the network clustering problem, we
HTAH ¢ R™™ andb := H"b € R™ are in the form of define the following notion of local controllability:
o B Definition 4: Let be given a dynamical networkA, B)
Bi as B Bo with the initial statexz(0) = 0. Under Definition 2, the
) i ) 0 state of a clustef;) is said to beclusterwise controllable
A= e T yb=1 . (8) if there exists an inputiy(t) € R™ for ¢ € [0,7] such that
: : 8,1 0 (ez,,)"a(f) = Ty for somet > 0 and anyzy; € RIZwl,
Bt The clusterwise controllability characterizes whether the

statez|;) of a clusterZy; can be steered toward an arbitrary
state 7 within a finite time interval. This clusterwise
controllability coincides with a class of output controllability,
fvhere the output matrix is taken dsz, )" € RIZwlxn,

| - o e L B hi llabili fi [ impl
(4, B) having m inputs, the positive tri-diagonalization of _ase(_j on t 1S controllability, we, st, consider a Smp'e
n here b R" denotes thekth column of B situation in which some of the original clusters are reducible
(A, bk), W k€ u € in the following sense:

R™*™ is exploited to investigate the behavior of the systems Proposition 3: There exists a row-fullrank matrigy <
with respect tas. The following propositions show valuable (1T 1=5:) % || : [
properties of the positive tri-diagonalization (see, e.g., [5[X" " such that

apy(ez,) g (s) =0 (11)

[13] for the proofs):
Proposition 1: Let A € R"*" be a matrix andh € R”
a vector. For the paifA,b), there exists a positive tri- if and only if the state of the clustef, is not clusterwise
diagonalizing matrixd € R™*" that satisfies controllable. Hereafter, if (11) holds, the clustEy; is said
. ny _ o n—1 to bereducible
span (Heyz) = span ([b, Ab. n_’lA ) © Proof: The result immediately follows from the fact
s min{i : f; = 0}, if [[;=, 8 = 0 that the state offj; is not clusterwise controllable if and
' n, otherwise. only if (ez,)"[B, AB,..., A"'B] is singular. ]

with 8; > 0 for all i € {1,...,n — 1}. Moreover, the pair

(2, b) is referred to as @ositive tri-diagonal pairof (A, b).
Note that this transformation is defined for the pair of

matrix A and a vectob. In terms of the dynamical network



This cluster reducibility represents the uncontrollability(13) is rewritten as
of the state of the clustef;. The following theorem 12
characterizes the reducibility df;; through the positive tri- u i Vie{l,...,|Zy|l - &}
diagonalization with respect to each input. In what follows, Z aij hk’[z = v (16)

N re{l,...,n}
we define the label sétl := {1,...,m} and denoteB =
(b1, b)) € RPX™, for all k& € M. Denotingg (s) = [g1(s),...,gm (s)] and

Theorem 1:Given a dynamical network(A, B), let using Proposition 2 that showss} | = g}, we have

(A, bi) be a positive tri-diagonal pair ofA, b;) for each

k € M and denote its positive tri-diagonalizing matrix by H<6L1[t151)Tq[l](e% )Tan (s) 17)
Hy. Definegy := —Ql,;lbk € R"™ and t o
n | Zyl n |1 Zml
(o, T T n R : i o 4
Hiy = (ef,)TH € RIFwbn  He .= Hydiag (gx) . (12) =3 Zq[lﬂhﬂ & (s)| <D qmjhk[l]gk
r=1 j=1 oo r=1|j=1

Then, (11) is equivalent to
where the last term i8 from (16).

2 nl = 0. (13) [Poof of (14)] The stability ofg follows from the fact that
PAPT is negative definite. Transforming the coordinate by

Furthermore, take;; € RO*IZul such that[p[Tl],q[T”]T € a unitary matrix[PTﬁT]T, we have

qp [HY

Sy H

%X %l with gy € R(Zol =00 *I70] satistying (13) is a g(s) = g(s) +Z(s)P(sL,—A)'B,  (18)
unitary matrix*. Then, the aggregated modgtAP", PB) Z T ol =T =T
associated wittP in (4) is a stable dynamical network and E(s) = P'(sla—PAP') "PAP +P,
satisfies X whereZ is stable. Definéd® by replacingpy; in (4) with qp
9(s) =g(s). (14 for eachl € L. Then,[PT,P'|T is a unitary matrix, and
Proof: [(11)=(13)] Define®y (s) := (sI, —Ap)~'by. P (sI, — A)~' B =0 follows from (11). m
Denote the dimension of the controllable subspacedob;,) This theorem shows that the cluster reducibility is charac-
by i1, and thejth entry of&;, by GSJ Since®? (s) = 0 holds terized by the singularity of the set of afi} . In other
forall j e {ix +1,...,n} words, the clusterwise controllability can L)e determined
through the basis transformation with respect to each input.
efz (e7 )6y (s) = & () This basis transformation enables us to generalize our result

for single-input dynamical networks [11] to that for multi-
input ones. Note, however, that (13) is generally a strict
condition. That is because, it represents the uncontrollability
of the state ofZy; in terms ofall the inputs.

holds. Thus, we have

ap(ez,,) "9 (s) (15)
= qu(ez,) [H161(s) ..., Hn®p (5)]

= qp(ez, )" x . . . : . .
In this subsection, taking a sight on major order reduction,
[Hiey'z, (e),) 61(5)7""Hme?;%m(e?ﬁm)T@m(S)]' we relax the reducibility ofZy; in Proposition 3 based on
. . . ~its equivalent condition in (13). Here, let be a natural
As shown in Proposition 2, the relative degree of e&gh .\ mber and SUPPOS& — &, — --- — 6, in (4). This
is j. This means thaw; for j € {1,...,4x} are linearly maans that all the original clusters are aggregated into the
independent each other Therefore, the last term of (15) 3% dimensional variables. Furthermore {@4 } e be a set

B. Reducibility Relaxation and Cluster Determination

equal to0 if and only if qp (%, )" Hyey; = 0 holds for all - of o vectors where],...,pl € R" are not necessarily
k € M. Hence linearly independent but satisfy
q[l]Hi[l] = qp)(ez,, )Ter1 ACH )leag (gr) =0 rank ([p{,...,py]) = 6.
follows from the fact thaty, = el ( T Zk) k- For this {py }rewm, if we takepy; € R*I1Zul such that
[(13)=-(11)] By denotingg; = [g .., g7]T € R” and
k k span (p-[g]) = span (( ) [pl Yo ,p;}) , (19)
Tyl-6\ T ; i|T
h/1c7[l1] hl?[ﬁ span ([pI, . ,pjn]) C span (PT) (20)
(e VTH, = ; . : € RIZmlxn, holds. This implies thatpan (PT), which coincides with the
. |1”| L Zuyln controllable subspace of the aggregated m¢BeiP™, PB),
hk[l] hk[l] includes the space spanned by the set of the row vectors

We allow emptyqp;. 2If § > |Zyyl, we takepy) = Lz



{pr}rem. Accordingly to this fact, we can exploit the free-which follows from the Cauchy interlacing theorem [5].
dom of {px }rem to impose some specific properties on theélherefore, we have the bound of the norm=fn (18) as
aggregated model, such as the preservation of the steady- I (s)| < ||l HA_IH 1

state characteristic and the positivity (see Definition 1) of - o0 =

dynamical networks. We give the following definition: which does not depend d¢h Thus, what remains to be shown
Definition 5: Given a dynamical network(A, B), let IS _ .
(2Ay, b)) be a positive tri-diagonal pair of4, by) for each HP (sI, — A) BH <ch (24)

k € M and denote its positive tri-diagonalizing matrix by

H,.. Furthermore, for a given sepy }xen of row vectors for a positive constant. We rewrite the matnx-lk[l] in (12)
pr € R which are not necessarily linearly mdependent
denote hk[] T - - T
1Zi| T Him pk I (pkez[’l) + {0’ 200 Tl | 21|
pkeg[l] = |:p11§[l]?"'apk[li :| GRle [1]‘. U
where .
The clusterZy for I € L |s said to bef-weakly reducible - s _ k[l] hle  Rixn
with respect to{pk}keM if pk #0 andHg 1 in (12) satisfies kg = Tk pk[ k(1] )

There existsqp; such that[p[l] q[l]]T is a unitary matrix®.
j k[l] 1
h?c?l] pllc[l] hk?l] <0, 0 R, (1) Thus, we have ]
T T
q[l]Hg[l] =4 [07 Mi,20 - - 7nk7‘I[l]‘i|

forall k € M andj € {1,...,|Zyy|}, whereh’¥ e Rx» .
< J € {L . | Tyl}, GO from the relation (22). Note thdtq(;|| = 1. Moreover, the

delnott:f tr:jg*tfr_m row Veﬁtors O‘H o bes the d definition of thed-weak reducibility implies||n; ;| < 6 for
n this definition, the consta prescribes the degree all k e M andj c {2 "a|I[l]|} Hence, (24) follows from

of the linear dependence betwebﬁl and hk[l] scaled by the same argument in the proof of Theorem 1. Finally, from
pk[ /pkl Namely,0 represents the degree of the reducibilitythe inclusion (20) withp;, = ol Hy = (—A~'b;,)T, we have

of Zp under the weighting; in (19). In addition, the weak PA-1B — ( in (18). Henceyg (0) = g (0) f0||0WS_ u
cluster redUCIbI'Ity suitable for multi- |nput systems is defined Theorem 2 indicates that by takmg the aggregation matrix
by introducing{p }kem. with (22), we can construct the aggregated model such that

In what follows, we construct a cluster sfj; };c1. such  the discrepancy between the transfer functignand g is
that all the clusters ar@-weakly reducible. Here, we exploit linearly bounded by# and their DC-gain is identical.
the freedom of{py}rem to achieveg(0) = g(0). The addition, pj; satisfying (22) is constructed by using, eg,
aggregation of thé-weakly reducible cluster set yields thethe Gram- Schmldt orthogonalization @fl ) [p1,...,p7].
aggregated model having the properties as shown in theFor the multi-input cases (i.em > 2), p in Theorem 2
following theorem: has negative entries even (ifi, B) is aposmve dynamical
Theorem 2:Given a dynamical network(A, B), let network. This means that the aggregated model does not
(2%, b) be a positive tri-diagonal pair ofA, by,) for each preserve the positivity of the original system. The following
k € M and denote its positive tri-diagonalizing matrixtheorem shows that if all the clusters are aggregated into

by Hy. Take pr, = g} Hy for all Kk € M. For eachd- scaler variables (i.e., i, = --- = J;, = 1), the aggregated
weakly reducible clusteZy; with respect to{py } rem, define  model preserves the positivity:
P € R™* Tl such that Theorem 3:Given a positive dynamical networfA, B),
takepy = -+ = py = @, H,, p € M under the same
Span(p[Tl]) = span ((e%m)T [PL o 7p;]) , if m < |y notation as in Theorem 2. Furthermore, for edciveakly
) reducible clustefZy; with respect to{px } e, define
P = I\IUH’ otherwise.
(22) Pu = Pulll ¢ g1x\Tul, pu = O, Huez, . (25)
Then, the aggregated modét AP, PB) associated wittP ||pu[l] H
in (4) is a stable dynamical network, and satisfig®) = Then, the aggregated mod@t APT, PB) associated witHP
g(0) and in (4) is a stable positive dynamical network, and satisfies
lg(s) —&(s)|.,, <ab (23) (23) for a positive constant. In addition g, (0) = g, (0)
holds, whergy,, andg,, are theuth column vectors o and
for a positive constant. g, respectively.

Proof: The stability of § follows from the fact that Proof: The result of the positivity preservation follows
PAPT is negative definite. We prove (23) based on (18)from the similar argument in the proof of Corollary 2 in [13].
Note that||P|| = ||P|| = 1 and Furthermore, sinc®A~'b, = 0 holds for (18),g, (0) =

g, (0) follows. [ |

3We allow emptyqy;;.

(sIa — PAPT)”HOO = [[PaPT) | < a1,



Fig. 3.
Nodes).

Fig. 4. Clusterized Network of the Holme-Kim Model (103 Clusters).

C. Numerical Example

IV. CONCLUSION

In this paper, we have proposed a model reduction method
for a linear system evolving on large-scale complex net-
works, called dynamical networks. The main contribution
of this paper is generalization of the reduction scheme for
single-input dynamical networks [11] to that for multi-input
ones. To this end, we have introduced a basis transforma-
tion of the state-space that is implemented as matrix tri-
diagonalization with respect to each input. Using this basis
transformation, we construct a set of clusters (i.e., disjoint
subsets of state variables) based on a notion of cluster-
wise controllability that characterizes local controllability
of the state-space of the dynamical networks. Aggregating
the cluster set under suitable weighting, we obtain a re-

Dynamical System Evolving on the Holme-Kim Model (1000duced model that preserves interconnection topology of the

original system as well as some specific properties, such
as stability, steady-state characteristic and system positivity.
Furthermore, we have derived dii..-error bound of the
state discrepancy caused by the aggregation.
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