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Abstract— This paper proposes a model reduction method for
a multi-input linear system evolving on large-scale complex net-
works, called dynamical networks. In this method, we construct
a set of clusters (i.e., disjoint subsets of state variables) based on
a notion of clusterwise controllability that characterizes a kind
of local controllability of the state-space. The clusterwise con-
trollability is determined through a basis transformation with
respect to each input. Aggregating the constructed clusters, we
obtain a reduced model that preserves interconnection topology
of the clusters as well as some particular properties, such as
stability, steady-state characteristic and system positivity. In
addition, we derive anH∞-error bound of the state discrepancy
caused by the aggregation. The efficiency of the proposed
method is shown by a numerical example including a large-
scale complex network.

I. I NTRODUCTION

Dynamical systems on large-scale complex networks
(large-scale dynamical networks), whose behavior is de-
scribed by an interaction of a large number of interconnected
subsystems, have been widely studied over the past decades.
Examples of such dynamical networks include World-Wide-
Web, gene regulatory networks, spread of infection; see
[1], [2], [3], [4] for an overview. In general, due to their
large-scale complex network topology, the straightforward
application of traditional analysis and design methods is
often unrealistic. Therefore, model reduction is indispensable
for overcoming such a difficulty; see [5], [6], [7] for survey
articles.

The balanced truncation, the Hankel-norm approximation
and the Krylov projection, which are well-known as tradi-
tional model reduction methods, provide a reduced model
suitably approximating the input-to-output mapping of a
given system [5], [6]. However, these traditional reduction
methods have a common drawback in applying to dynamical
networks; The interconnection structure among the original
states is lost through the reduction. More specifically, each
state of the reduced model is usually obtained by the
linear combination of all the states of the original system,
namely the transformation matrix for reduction isdense.
For dynamical networks, it is more important to address a
network structure preserving model reduction problem. We
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attempt to address this problem by means of an input-to-
statemapping approximation using transformation matrices
on which a suitablesparsity is imposed.

As related studies, structure preserving mode reduction
problems have been discussed in various literature [8], [9],
[10]. However, these problems are not formulated based
on the premise of the network structure preservation even
though they consider the preservation of some underlying
structure of systems, such as the Lagrangian structure and
the second-order structure. Furthermore, the paper [8], where
a network structure preserving model reduction problem is
considered, does not discuss the relation between partition
of subsystems and the resultant approximation error.

Against such a background, we have proposed in [11]
a network structure preserving model reduction method
(network clustering method) for single-input dynamical net-
works. In this method, we construct a set of clusters (i.e.,
disjoint subsets of state variables) based on a notion of cluster
reducibility that coincides with a kind of local uncontrollabil-
ity of the state-space of the dynamical networks. Aggregating
the cluster set under suitable weighting, we obtain a reduced
model that preserves interconnection topology of the original
system as well as some specific properties, such as stability,
steady-state characteristic and system positivity. In addition,
we have derived anH∞-error bound of the state discrepancy
caused by the aggregation.

This paper extends the network clustering scheme for
single-input systems [11] to that for multi-input systems. To
this end, transforming the basis of its state-space with respect
to each input, we derive a necessary and sufficient condition
of the cluster reducibility, which is the converse concept
of clusterwise controllability. This basis transformation is
based on tri-diagonalization of the system matrices, whose
fundamental properties are useful for constructing reducible
clusters. Furthermore, we introduce more general formula-
tion of weak cluster reducibility suitable for establishing a
clustering scheme for the multi-input systems.

This paper is organized as follows: In Section II, we
describe a linear system evolving on complex networks
and formulate a network clustering problem for this class
of systems. Furthermore, we define a basis transformation
implemented as matrix tri-diagonalization that is important
to solve the network clustering problem. In Section III,
defining a notion of clusterwise controllability, we give a
solution by fully exploiting the fundamental properties of
the tri-diagonalization. Furthermore, we show the efficiency
of the proposed method through a numerical example of a
dynamical network with1000 nodes and2000 edges. Finally,



Section IV concludes this paper.
NOTATION The following notation is to be used:
R (R+) the set of (positive) real numbers
In the unit matrix of the sizen× n
enk the kth column vector ofIn
enk1:k2

the k1th to k2th columns ofIn
span (M) the space spanned by the column

vectors of a matrixM
∥M∥ = σmax(M) the maximum singular value of a

matrix M
diag (v) the diagonal matrix whose diagonal

entries are the entries of a vectorv
Diag (M1, . . . ,Mn) the block-diagonal matrix composed

of matricesM1, . . . ,Mn

The H∞-norm of a stable proper transfer matrixG (s) is
defined by ∥G(s)∥∞ := supω∈R σmax (G (jω)). For a set
I of the natural numbers,|I| denotes the cardinality ofI,
and enI ∈ Rn×|I| denotes the matrix whose column vectors
are composed ofenk for k ∈ I (in some order ofk), i.e.,
enI =

[
enk1

, . . . , enkm

]
∈ Rn×m for I = {k1, . . . , km}.

II. PRELIMINARY

A. Problem Formulation

This paper deals with a linear system evolving on large-
scale complex networks whose general form is defined as
follows:

Definition 1: A linear system

ẋ = Ax+Bu (1)

with A ∈ Rn×n andB ∈ Rn×m is said to be adynamical
network(A,B) if A is stable and symmetric. Moreover, if
the off-diagonal entries ofA and the entries ofB are all
non-negative, it is said to be apositivedynamical network.

Let us see the following (spatially-discrete) reaction-
diffusion system evolving on a complex network, of par-
ticular interest in this paper:

ẋi = −rixi +
n∑

j=1,j ̸=i

ai,j(xj − xi) +
m∑

k=1

bi,kuk (2)

for i ∈ {1, . . . , n} where ri ≥ 0 denotes the intensity of
the reaction (chemical dissolution) ofxi, and ai,j = aj,i
for i ̸= j denotes the intensity of the diffusion betweenxi

andxj ; see Fig. 1. This system is known as a basic model
that represents a diffusion process evolving over complex
networks (see [12]). The interaction topology of (2) can be
represented in a graph theoretic fashion: By defining the
reaction matrixR := diag([r1, · · · , rn]) and the symmetric
weighted graph LaplacianL := {li,j} for

li,j =

{
−ai,j , i ̸= j∑n

j=1,j ̸=i ai,j , i = j,

the system (2) is represented as a dynamical network with
the state vectorx := [x1, . . . , xn]

T ∈ Rn and

A = − (R+ L) , B = [b1, . . . , bm] (3)

Fig. 1. Depiction of Dynamical Systems Evolving on Complex Network.

wherebk := [b1,k, . . . , bn,k]
T ∈ Rn. This class of systems is

stable if ri > 0 holds for at least onei, ai,j ≥ 0 holds for
all i ̸= j, andL is irreducible.

In what follows, we formulate a network structure preserv-
ing model reduction problem (network clustering problem).
First, the following notion of network clustering is defined:

Definition 2: Let (A,B) be a dynamical network. The
family of an index set{I[l]}l∈L for L := {1, . . . , L} is called
a cluster set(its element is referred to as a cluster) if each
elementI[l] is a disjoint subset of{1, . . . , n} and it satisfies∪

l∈L I[l] = {1, . . . , n}. Furthermore, anaggregation matrix
compatible with{I[l]}l∈L is defined by

P := Diag
(
p[1], . . . , p[L]

)
Π ∈ R∆×n, ∆ :=

L∑
l=1

δl (4)

with p[l] ∈ Rδl×|I[l]| such thatδl ≤ |I[l]| and p[l]p
T
[l] = Iδl ,

and the permutation matrix

Π := [enI[1]
, . . . , enI[L]

]T ∈ Rn×n, enI[l]
∈ Rn×|I[l]|. (5)

Then, theaggregated modelof (A,B) associated withP is
given by (

PAPT,PB
)
. (6)

This aggregated model is constructed by projecting the
controllable subspace of(A,B) onto span(PT). Note that
PPT = I∆ holds andPAPT is stable and symmetric.
For this network clustering, we give the following intuitive
explanation: There areL clusters labeled byl ∈ L, and
each node of the original network belongs to exactly one
of the clusters. On the other hand, the number of clusters
in the aggregated model is the same as that in the original
system. Letx[l] := (enI[l]

)Tx ∈ R|I[l]| denote the state of
the lth cluster. The linear transformation performed by the
aggregation matrix (4) impliesx[l] = p[l]x[l] for l ∈ L where
x[l] ∈ Rδl is an aggregated state of the cluster. We can
see that this transformation represents the aggregation of the
original statex[l] ∈ R|I[l]| into the aggregated onex[l] ∈ Rδl

under the weighting ofp[l] ∈ Rδl×|I[l]|. Consequently, the
interconnection topology (spatial distribution) of the states
is preserved through the reduction; see Fig. 2.

In what follows, we derive a condition thatx[l] behaves
similarly to x[l] in a suitable sense. From a model reduc-



Fig. 2. Depiction of Network Clustering.

tion point of view, a smallerδl is desirable to reduce the
dimension of dynamical networks.

Hereafter, the transfer function from the input to the all
state variables in the dynamical network (1) and that of the
aggregated model (6) are denoted by

g (s) := (sIn −A)
−1

B, (7)

ĝ (s) := PT
(
sI∆ − PAPT

)−1
PB,

respectively. Then, the network clustering problem to be
addressed is formulated as follows:

Problem 1: Let (A,B) be a dynamical network. Given
a constantϵ ∈ R+, find an aggregation matrixP in (4)
compatible with{I[l]}l∈L such that

∥g (s)− ĝ (s)∥∞ ≤ ϵ.

B. Positive Tri-Diagonalization

In this paper, we make use of the following matrix tri-
diagonalization to investigate the behavior of clusters:

Definition 3: Let A ∈ Rn×n be a matrix andb ∈ Rn

a vector. A unitary transformation byH ∈ Rn×n is said
to be positive tri-diagonalizationof the pair⟨A, b⟩ if A :=
HTAH ∈ Rn×n andb := HTb ∈ Rn are in the form of

A =


α1 β1

β1 α2 β2

. . .
. . .

. ..
. . .

. .. βn−1

βn−1 αn

 , b =


β0

0
...
0

 (8)

with βi ≥ 0 for all i ∈ {1, . . . , n − 1}. Moreover, the pair
⟨A, b⟩ is referred to as apositive tri-diagonal pairof ⟨A, b⟩.

Note that this transformation is defined for the pair of a
matrix A and a vectorb. In terms of the dynamical network
(A,B) having m inputs, the positive tri-diagonalization of
⟨A, bk⟩, where bk ∈ Rn denotes thekth column ofB ∈
Rn×m, is exploited to investigate the behavior of the systems
with respect touk. The following propositions show valuable
properties of the positive tri-diagonalization (see, e.g., [5],
[13] for the proofs):

Proposition 1: Let A ∈ Rn×n be a matrix andb ∈ Rn

a vector. For the pair⟨A, b⟩, there exists a positive tri-
diagonalizing matrixH ∈ Rn×n that satisfies

span
(
Hen

1:i

)
= span

([
b, Ab, . . . , An−1b

])
, (9)

i :=

{
min
i
{i : βi = 0}, if

∏n−1
i=1 βi = 0

n, otherwise.

This proposition shows the existence condition of the
positive tri-diagonalization and relates the range space ofH
to theith dimensional controllable sub-space of⟨A, b⟩. Note
that there exists a positive tri-diagonalizing matrixHk for
each⟨A, bk⟩ thanks to the supposition ofA in Definition 1.

Proposition 2: Given a positive tri-diagonal pair⟨A, b⟩
with a stableA, defineGi(s) := (eni )

T(sIn −A)−1b. Then,
the relative degree ofGi is i, and∥∥Gi (s)

∥∥
∞ = Gi (0) (10)

holds for all i ∈ {1, . . . , n}.
This proposition shows thatGi (i.e., the transfer function

from the input to theith state in the linear system(A, b))
has the low-pass property represented by (10). This property
is useful for deriving anH∞-error bound in Section III.

Remark 1:The tri-diagonalization procedures of large
matrices have been widely investigated in, e.g., numerical
algebra community toward various applications, such as
eigenvalue computations [5]. In particular for symmetric
matrices, unitary transformations are often used to pre-
serve the symmetry. It should be emphasized that the tri-
diagonalization procedures do not require computationally
expensive operations as discussed in various literature [5],
[7], [14]. Especially for sparse matrices, such as the graph
Laplacian of complex networks, the numerical efficiency
stands out. In this sense, the positive tri-diagonalization can
be implemented even for large-scale dynamical networks.

III. N ETWORK CLUSTERING

A. Exactly Reducible Case

In order to address the network clustering problem, we
define the following notion of local controllability:

Definition 4: Let be given a dynamical network(A,B)
with the initial statex(0) = 0. Under Definition 2, the
state of a clusterI[l] is said to beclusterwise controllable
if there exists an inputu[l](t) ∈ Rm for t ∈ [0, t] such that
(enI[l]

)Tx(t) = x[l] for somet > 0 and anyx[l] ∈ R|I[l]|.
The clusterwise controllability characterizes whether the

statex[l] of a clusterI[l] can be steered toward an arbitrary
state x[l] within a finite time interval. This clusterwise
controllability coincides with a class of output controllability,
where the output matrix is taken as(enI[l]

)T ∈ R|I[l]|×n.
Based on this controllability, we, first, consider a simple
situation in which some of the original clusters are reducible
in the following sense:

Proposition 3: There exists a row-fullrank matrixq[l] ∈
R(|I[l]|−δl)×|I[l]| such that

q[l](e
n
I[l]

)Tg (s) = 0 (11)

if and only if the state of the clusterI[l] is not clusterwise
controllable. Hereafter, if (11) holds, the clusterI[l] is said
to be reducible.

Proof: The result immediately follows from the fact
that the state ofI[l] is not clusterwise controllable if and
only if (enI[l]

)T[B,AB, . . . , An−1B] is singular.



This cluster reducibility represents the uncontrollability
of the state of the clusterI[l]. The following theorem
characterizes the reducibility ofI[l] through the positive tri-
diagonalization with respect to each input. In what follows,
we define the label setM := {1, . . . ,m} and denoteB =
[b1, . . . , bm] ∈ Rn×m.

Theorem 1:Given a dynamical network(A,B), let
⟨Ak, bk⟩ be a positive tri-diagonal pair of⟨A, bk⟩ for each
k ∈ M and denote its positive tri-diagonalizing matrix by
Hk. Definegk := −A−1

k bk ∈ Rn and

Hg
k[l] := (enI[l]

)THg
k ∈ R|I[l]|×n, Hg

k := Hkdiag (gk) . (12)

Then, (11) is equivalent to

q[l]

[
Hg

1[l], . . . ,H
g
m[l]

]
= 0. (13)

Furthermore, takep[l] ∈ Rδl×|I[l]| such that[pT[l], q
T
[l]]

T ∈
R|I[l]|×|I[l]| with q[l] ∈ R(|I[l]|−δl)×|I[l]| satisfying (13) is a
unitary matrix 1. Then, the aggregated model(PAPT,PB)
associated withP in (4) is a stable dynamical network and
satisfies

g (s) = ĝ (s) . (14)

Proof: [(11)⇒(13)] DefineGk (s) := (sIn−Ak)
−1bk.

Denote the dimension of the controllable subspace of⟨A, bk⟩
by ik, and thejth entry ofGk by Gj

k. SinceGj
k(s) ≡ 0 holds

for all j ∈
{
ik + 1, . . . , n

}
en
1:ik

(en
1:ik

)TGk (s) = Gk (s)

holds. Thus, we have

q[l](e
n
I[l]

)Tg (s) (15)

= q[l](e
n
I[l]

)T [H1G1 (s) , . . . , HmGm (s)]

= q[l](e
n
I[l]

)T ×
[H1e

n
1:i1

(en
1:i1

)TG1(s), . . . ,Hmen
1:im

(en
1:im

)TGm(s)].

As shown in Proposition 2, the relative degree of eachGj
k

is j. This means thatGj
k for j ∈ {1, . . . , ik} are linearly

independent each other. Therefore, the last term of (15) is
equal to0 if and only if q[l](enI[l]

)THke
n
1:ik

= 0 holds for all
k ∈ M. Hence

q[l]H
g
k[l] = q[l](e

n
I[l]

)THke
n
1:ik

(en
1:ik

)Tdiag (gk) = 0

follows from the fact thatgk = en
1:ik

(en
1:ik

)Tgk.

[(13)⇒(11)] By denotinggk = [g1k, . . . , g
n
k ]

T ∈ Rn and(
e
|I[l]|−δl
i

)T

q[l] =
[
qi,1[l] , · · · , q

i,|I[l]|
[l]

]
∈ R1×|I[l]|

(enI[l]
)THk =


h1,1
k[l] · · · h1,n

k[l]

... · · ·
...

h
|I[l]|,1
k[l] · · · h

|I[l]|,n
k[l]

 ∈ R|I[l]|×n,

1We allow emptyq[l].

(13) is rewritten as

|I[l]|∑
j=1

qi,j[l] h
j,r
k[l]g

r
k = 0,

{
∀i ∈

{
1, . . . , |I[l]| − δl

}
∀r ∈ {1, . . . , n}

(16)

for all k ∈ M. Denoting g (s) = [g1 (s) , . . . , gm (s)] and
using Proposition 2 that shows∥Gr

k∥∞ = grk, we have∥∥∥∥(e|I[l]|−δl
i

)T

q[l](e
n
I[l]

)Tgk (s)

∥∥∥∥
∞

(17)

=

∥∥∥∥∥∥
n∑

r=1

|I[l]|∑
j=1

qi,j[l] h
j,r
k[l]G

r
k (s)

∥∥∥∥∥∥
∞

≤
n∑

r=1

∣∣∣∣∣∣
|I[l]|∑
j=1

qi,j[l] h
j,r
k[l]g

r
k

∣∣∣∣∣∣
where the last term is0 from (16).

[Poof of (14)] The stability ofg follows from the fact that
PAPT is negative definite. Transforming the coordinate by
a unitary matrix[PT,P

T
]T, we have

g (s) = ĝ (s) + Ξ (s)P (sIn −A)
−1

B, (18)

Ξ (s) = PT
(
sI∆ − PAPT

)−1
PAP

T
+ P

T
,

whereΞ is stable. DefineP by replacingp[l] in (4) with q[l]

for each l ∈ L. Then, [PT,P
T
]T is a unitary matrix, and

P (sIn −A)
−1

B = 0 follows from (11).
This theorem shows that the cluster reducibility is charac-

terized by the singularity of the set of allHg
k[l]. In other

words, the clusterwise controllability can be determined
through the basis transformation with respect to each input.
This basis transformation enables us to generalize our result
for single-input dynamical networks [11] to that for multi-
input ones. Note, however, that (13) is generally a strict
condition. That is because, it represents the uncontrollability
of the state ofI[l] in terms ofall the inputs.

B. Reducibility Relaxation and Cluster Determination

In this subsection, taking a sight on major order reduction,
we relax the reducibility ofI[l] in Proposition 3 based on
its equivalent condition in (13). Here, letδ be a natural
number and supposeδ = δ1 = · · · = δL in (4). This
means that all the original clusters are aggregated into the
δth dimensional variables. Furthermore, let{pk}k∈M be a set
of row vectors wherepT1 , . . . , p

T
m ∈ Rn are not necessarily

linearly independent but satisfy

rank
([
pT1 , . . . , p

T
m

])
= δ.

For this{pk}k∈M, if we takep[l] ∈ Rδ×|I[l]| such that2

span
(
pT[l]

)
= span

(
(enI[l]

)T
[
pT1 , . . . , p

T
m

])
, (19)

then
span

([
pT1 , . . . , p

T
m

])
⊆ span

(
PT

)
(20)

holds. This implies thatspan
(
PT

)
, which coincides with the

controllable subspace of the aggregated model(PAPT,PB),
includes the space spanned by the set of the row vectors

2If δ ≥ |I[l]|, we takep[l] = I|I[l]|.



{pk}k∈M. Accordingly to this fact, we can exploit the free-
dom of {pk}k∈M to impose some specific properties on the
aggregated model, such as the preservation of the steady-
state characteristic and the positivity (see Definition 1) of
dynamical networks. We give the following definition:

Definition 5: Given a dynamical network(A,B), let
⟨Ak, bk⟩ be a positive tri-diagonal pair of⟨A, bk⟩ for each
k ∈ M and denote its positive tri-diagonalizing matrix by
Hk. Furthermore, for a given set{pk}k∈M of row vectors
pk ∈ R1×n, which are not necessarily linearly independent,
denote

pke
n
I[l]

=
[
p1k[l], . . . , p

|I[l]|
k[l]

]
∈ R1×|I[l]|.

The clusterI[l] for l ∈ L is said to beθ-weakly reducible
with respect to{pk}k∈M if p1k[l] ̸= 0 andHg

k[l] in (12) satisfies∥∥∥∥∥hjgk[l] − pjk[l]

p1k[l]
h1gk[l]

∥∥∥∥∥ ≤ θ, θ ∈ R+ (21)

for all k ∈ M and j ∈ {1, . . . , |I[l]|}, wherehjgk[l] ∈ R1×n

denotes thejth row vectors ofHg
k[l].

In this definition, the constantθ prescribes the degree
of the linear dependence betweenhjgk[l] and h1gk[l] scaled by

pjk[l]/p
1
k[l]. Namely,θ represents the degree of the reducibility

of I[l] under the weightingp[l] in (19). In addition, the weak
cluster reducibility suitable for multi-input systems is defined
by introducing{pk}k∈M.

In what follows, we construct a cluster set{I[l]}l∈L such
that all the clusters areθ-weakly reducible. Here, we exploit
the freedom of{pk}k∈M to achieveg (0) = ĝ (0). The
aggregation of theθ-weakly reducible cluster set yields the
aggregated model having the properties as shown in the
following theorem:

Theorem 2:Given a dynamical network(A,B), let
⟨Ak, bk⟩ be a positive tri-diagonal pair of⟨A, bk⟩ for each
k ∈ M and denote its positive tri-diagonalizing matrix
by Hk. Take pk = gTkHk for all k ∈ M. For eachθ-
weakly reducible clusterI[l] with respect to{pk}k∈M, define
p[l] ∈ Rm×|I[l]| such that span(pT[l]) = span

(
(enI[l]

)T
[
pT1 , . . . , p

T
m

])
, if m < |I[l]|

p[l] = I|I[l]|, otherwise.
(22)

Then, the aggregated model(PAPT,PB) associated withP
in (4) is a stable dynamical network, and satisfiesg (0) =
ĝ (0) and

∥g (s)− ĝ (s)∥∞ ≤ αθ (23)

for a positive constantα.
Proof: The stability of ĝ follows from the fact that

PAPT is negative definite. We prove (23) based on (18).
Note that∥P∥ =

∥∥P∥∥ = 1 and∥∥∥(sI∆ − PAPT
)−1

∥∥∥
∞

=
∥∥∥(PAPT

)−1
∥∥∥ ≤

∥∥A−1
∥∥ ,

which follows from the Cauchy interlacing theorem [5].
Therefore, we have the bound of the norm ofΞ in (18) as

∥Ξ (s)∥∞ ≤ ∥A∥
∥∥A−1

∥∥+ 1

which does not depend onP. Thus, what remains to be shown
is ∥∥∥P (sIn −A)

−1
B
∥∥∥
∞

≤ cθ (24)

for a positive constantc. We rewrite the matrixHg
k[l] in (12)

as

Hg
k[l] =

h1gk[l]
p1k[l]

(
pke

n
I[l]

)T

+
[
0, ηTk,2, . . . , η

T
k,|I[l]|

]T
where

ηk,j := hjgk[l] −
pjk[l]

p1k[l]
h1gk[l] ∈ R1×n.

There existsq[l] such that[pT[l], q
T
[l]]

T is a unitary matrix3.
Thus, we have

q[l]H
g
k[l] = q[l]

[
0, ηTk,2, . . . , η

T
k,|I[l]|

]T
from the relation (22). Note that

∥∥q[l]∥∥ = 1. Moreover, the
definition of theθ-weak reducibility implies∥ηk,j∥ ≤ θ for
all k ∈ M and j ∈ {2, . . . , |I[l]|}. Hence, (24) follows from
the same argument in the proof of Theorem 1. Finally, from
the inclusion (20) withpk = gTkHk = (−A−1bk)

T, we have
PA−1B = 0 in (18). Hence,g (0) = ĝ (0) follows.

Theorem 2 indicates that by taking the aggregation matrix
with (22), we can construct the aggregated model such that
the discrepancy between the transfer functionsĝ and g is
linearly bounded byθ and their DC-gain is identical. In
addition, p[l] satisfying (22) is constructed by using, e.g.,
the Gram-Schmidt orthogonalization of(enI[l]

)T[pT1 , . . . , p
T
m].

For the multi-input cases (i.e.,m ≥ 2), p[l] in Theorem 2
has negative entries even if(A,B) is a positivedynamical
network. This means that the aggregated model does not
preserve the positivity of the original system. The following
theorem shows that if all the clusters are aggregated into
scaler variables (i.e., ifδ1 = · · · = δL = 1), the aggregated
model preserves the positivity:

Theorem 3:Given a positive dynamical network(A,B),
take p1 = · · · = pm = gTµHµ, µ ∈ M under the same
notation as in Theorem 2. Furthermore, for eachθ-weakly
reducible clusterI[l] with respect to{pk}k∈M, define

p[l] =
pµ[l]∥∥pµ[l]∥∥ ∈ R1×|I[l]|, pµ[l] := gTµHµe

n
I[l]

. (25)

Then, the aggregated model(PAPT,PB) associated withP
in (4) is a stable positive dynamical network, and satisfies
(23) for a positive constantα. In addition gµ (0) = ĝµ (0)
holds, wheregµ and ĝµ are theµth column vectors ofg and
ĝ, respectively.

Proof: The result of the positivity preservation follows
from the similar argument in the proof of Corollary 2 in [13].
Furthermore, sincePA−1bµ = 0 holds for (18),gµ (0) =
ĝµ (0) follows.

3We allow emptyq[l].
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Fig. 3. Dynamical System Evolving on the Holme-Kim Model (1000
Nodes).
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Fig. 4. Clusterized Network of the Holme-Kim Model (103 Clusters).

C. Numerical Example

In this subsection, we show the efficiency of the proposed
clustering method through a numerical example. We deal
with a linear system evolving on the complex network of
the Holme-Kim model in Fig. 3, which is well-known as an
extension of the Barabasi-Albert model satisfying the scale-
free and small-world property while having the high cluster
coefficient [1], [3]. This graph has1000 nodes and2000
edges.

Let be given the bidirectional network(A, b) as follows:
For A ∈ R3000×3000 in (2), the diffusion termsai,j are
randomly chosen from(0, 1] if node i and j of i ̸= j are
connected, otherwise0, and the reaction terms are taken as
r1 = 1 and ri = 0 for all i ∈ {2, . . . , 3000}. Moreover, we
takeB = [I2, 0] ∈ R1000×2, i.e., the first and second nodes
are the input nodes.

By Theorem 2, we construct an aggregated model preserv-
ing the DC-gain. Taking the coarseness parameter asθ = 0.5,
we obtain the aggregated model with the 103rd order, whose
interconnection topology is shown in Fig. 4. Comparing this
figure with Fig. 3, we can see that relatively far nodes from
the inputsu1 and u2 are remarkably clusterized. Since the
relative error∥g − ĝ∥H∞/∥g∥H∞ is 0.0032, the original
system is well approximated by the aggregated model.

IV. CONCLUSION

In this paper, we have proposed a model reduction method
for a linear system evolving on large-scale complex net-
works, called dynamical networks. The main contribution
of this paper is generalization of the reduction scheme for
single-input dynamical networks [11] to that for multi-input
ones. To this end, we have introduced a basis transforma-
tion of the state-space that is implemented as matrix tri-
diagonalization with respect to each input. Using this basis
transformation, we construct a set of clusters (i.e., disjoint
subsets of state variables) based on a notion of cluster-
wise controllability that characterizes local controllability
of the state-space of the dynamical networks. Aggregating
the cluster set under suitable weighting, we obtain a re-
duced model that preserves interconnection topology of the
original system as well as some specific properties, such
as stability, steady-state characteristic and system positivity.
Furthermore, we have derived anH∞-error bound of the
state discrepancy caused by the aggregation.
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