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Abstract— In this paper, we develop a dissipativity-preserving domain, we show that our generalized singular perturbation

model reduction method based on a generalized singular approximation admits an a priori error bound in terms of the
perturbation approximation. This model reduction framework Ho-norm

can deal with not only standard singular perturbation approx- To clarify our contribution, some references for structure-
imation but also projection-based model reduction as a special fy !

case. To develop such a model reduction method, we investigate Preserving model reduction are if‘ order. For example, [2] a_nd
a condition under which system dissipativity is appropriately [3] each address a model reduction problem while preserving
preserved through the approximation. Moreover, deriving a  a particular system structure such as the Lagrangian structure
novel factorization of the error system in the Laplace domain, or the second-order structure. In particular, [4] and [5] de-

we derive an a priori error bound in terms of the Hs-norm. The . ) L .
efficiency of the model reduction is shown through an example velop model reduction methods with passivity preservation.

of interconnected second-order Systems_ HOWGVGI’, these mOde| redUCtIOI’] pI’Ob|emS are not formulated
on the premise of dissipativity, which corresponds to a
|. INTRODUCTION generalized notion of passivity. Moreover, no global error

Along with the recent dramatic developments in engibound has been derived. It should be finally noted that
neering, the architecture of systems that interest the conti$lis paper provides a generalization of the results derived
community has tended to become more complex and largér [6] by the authors, where a passivity-preserving model
in scale [1]. In view of this, it is crucial to develop approx-reduction method based on the standard singular perturbation
imation methods that enables us to reduce the complexi@pproximation has been developed.
of systems. Additionally, it is desirable that some particular This paper is organized as follows. First, in Section Il, we
structures of systems such as stability, dissipativity, an@rmulate a dissipativity-preserving model reduction prob-
positivity are preserved through out the approximation. It im based on a notion of generalized singular perturbation
expected that this kind of structure-preserving model redu@pproximations. It will be found that the generalized singu-
tion has the potential to significantly simplify the analysidar perturbation approximation can deal with not only the
and synthesis of large-scale complex systems. standard singular perturbation approximation but also the

Against such a background, this paper addresses a mog&pjection-based model reduction as a special case. Next,
reduction problem that is formulated based on a generalizéid Section Ill, we describe the main results of this paper,
singular perturbation approximation. It is found that thevhich include the derivation of a condition for dissipativity
model reduction framework based on a generalized sifreservation and an a priori error bound in terms of the
gular perturbation approximation can deal with not onlynorm. Then, in Section IlI-C, we demonstrate the efficiency
the standard singular perturbation approximation but als®f our model reduction method through an example of
the projection-based model reduction as a special case; $8ass-spring-damper systems. Finally, concluding remarks
Section Il for details. In this sense, this model reductio@re provided in Section IV.
provides a unified framework for many model reductiorNotation The following notation is to be used: set of
methods. real numbers7,,: unit matrix of sizen xn; M < O,, (M <

In addition, we consider the preservation of system dissf2»): nhegative (semi)definiteness of a symmetric matxc
pativity. To this end, we first derive a tractable representatioR”*"; M = O, (M = Oy): positive (semi)definiteness of a
of reduced models, which provides a clear insight int§ymmetric matrix)/ € R™*"; im(}M): range space spanned
achieving dissipativity preservation. In addition, derivingdy the column vectors of a matrid/; tr(M): trace of a

a novel factorization of the error system in the Laplacénatrix M; diag(M, ..., M,): block diagonal matrix having
matricesMy, ..., M, on its block diagonal.

1Department of Mechanical and Environmental Informatics, Graduate _
School of Information Science and Engineering, Tokyo Institute of Tech- The Hoo-norm of a stable proper transfer matdx and

nology; 2-12-1, Meguro, Tokyo, Japan: the Ho-norm of a stable strictly proper transfer matéikare
{ishizaki, imura l@mei.titech.ac.jp respectively defined by
2School of Electrical Engineering, Automatic Control, Royal Institute of
Technology (KTH), SE-100 44 Stockholm, Sweden: |G ()|l :=sup ||G(Gw)]l,
hsan@ee.kth.se weER

3Department of Systems Innovation, Graduate School of Engineering 1 1

e}
Science, Osaka University; 1-3, Machikaneyama, Toyonaka, Osaka, Japan: P . T/ -
kashima@sys.es.osaka-u.ac.jp HG(S)”H2 ’ 2 tr(G(]w)G ( jw))dw
4Institute of Industrial Science, University of Tokyo; 4-6-1 Komaba, .
Meguro ward, Tokyo, Japamihara@sat.t.u-tokyo.ac.jp where|| - | denotes the induce2knorm.

— 00



Il. PROBLEM FORMULATION Note that thisIT does not depend on the basis selection of

A. Generalized Singular Perturbation Approximation the projection. This is because

. . —=T — =T I p—
We mathematically formulate a model reduction frame- IM=P H(ol,_— HPAP H")"'HP
work based on a notion of the generalized singular perturrtT)ﬁ-

: . . . . i i (n—n)x(n—mn) i
tion approximation [7], [8]. Let us consider a linear syste olds for any unitary matrix < R - This
Implies that, for a fixed constant € R, the generalized

5. T = Az + Bu 1) singular perturbation model, in (6) depends only on the
"1 y=Cxz+ Du choice of P € P™*",

with A € R"™*” B ¢ R"™™ C € R™*"™ and D € B. Dissipativity-Preserving Model Reduction Problem

Mgy X Mgy i i 1 . .o . .
R, In-much literature on the singular perturbation 14 formuylate a dissipativity-preserving model reduction

theory, it is assumed that system (1) is intrinsically decouple&omem, we begin with the following standard definition of
into several subsystems having different time scales; Se&rict) dissipativity [11], [12].

[9], [10]. Contrastingly, such an assumption is not made Definition 1- A [i S in (1) i id to bel
in this paper. Instead, by finding an appropriate coordina:]tqe‘;l gln!tlon '.h inear systema. in (1) is said to beV’-
transformation, we decouple system (1) into two subsyste ssipative with respect to

in a general manner. Namely, we denote the set of projection Q = QT € Rimutmy)x(mutmy)

matrices by

A ) if there existsV = VT = 0, such that
P .= (PcR™™ . PPT =1, #a<n}, (2

]:Q (A7 B,C, D; V) = On-i-mu (9)
and we perform theTcoordinate transformation>ofwith a
unitary matrix[PT, P ]T € R™*" with P € P?"*" andP € holds for
P(=1)xn_ Then, we obtain Fo(A,B,C,D;V) := (10)
H | papT paP’ H [PB}U [ATVTH/A VB}_[C D}TQ[O D]
. Jlil T [ PapT Pap”| (0] T PB BV 0 0 tm 0 fme
> 3)
—11[¢
y = {CPT CP } {77} + Du. In linear systems theory, the inequality (9) is called a
) dissipation inequalityand the quadratic functions
To reduce the dimension df, we impose aralgebraic T 11
constrainton the trajectory of). More specifically, confining fr(z):=a'Va 1)
the dynamics ofy by 5 = on, we obtain and
7= PAPTE + PAPY + P @ so =l mle[}] = |G Giv ] az
U u,y u,u
vyheren ahdg are replaced with trflrE[T)prommam}sand are calledstorage functionsand supply functions respec-
&, respectively. As long asl,,_; — PAP is nonsingular, tively
the approximant; in (4) is obtained as In the rest of this paper, we denote the transfer matrix of
i = (01, — PAP ) 'PAPT¢ ¥ by
G(s):=C(sl, —A)'B+ D, (13)

+(oI,_s — PAP')"'PBu. (5)
o i ) i . and the generalized singular perturbation approximar of
Substituting (5) into the equation with respect{tove have 5g5sociated with? € Pxn by

the generalized singular perturbation model A . o
Gy(s;P):=C(sl — A" 'B+ D, (14)

whereA, B, ¢ andD are defined as in (7). The aim of this
paper is to provide a solution to the following dissipativity-
where preserving model reduction problem.

Problem: Consider a linear systein in (1), and suppose

¢ = AL+ Bu (6)
gy = C&+ Du

i T T - paxa
{1 = PAP" + PAHAPAXE R that it is V-dissipative with respect t@. Given a constant
B := PB+ PAIIB € R"™™ (T) 6 > 0, find a generalized singular perturbation mod|
C := CP" + CIIAPT ¢ R > in (6) such that it isV/-dissipative with respect t@) and
D = D+ CIIB € R™v*X™Mu satisfies

1G(s) = Go(s; P, <6 (15)

and

= ?T(aln,ﬁ _ pApT)_lﬁ c R, ®) whereG andG,, are defined as in (13) and (14), respectively.



I1l. MAIN RESULTS
A. Dissipativity Preservation

First of all, we derive a tractable condition under which

This contradicts (19), and consequently (18) follows.
Next, we prove (17). We first prove that

the generalized singular perturbation approximation appro- ] ) ]
priately preserves system dissipativity in Definition 1. Thdolds. To this end, it suffices to show that

following fact will be useful for arguments below.

Lemma 1:Let a linear system® in (1) be given, and
suppose that it i$/-dissipative with respect t@. Consider
a Cholesky factoﬁ/% of V such thatV = VJV%. Then

2
Fo(Vi AV L ViB, OV Dily) < Ongm, (16)
2 2

holds.

Proof: It is found thatFg(A, B,C,D;V) in (10) is
rewritten as

VIFQ(Vi AV Vi B, CV Y D 1)V
2 2

whereV := diag(Vy, I, ). Hence, the claim follows. =

This lemma shows that any-dissipative system can be

transformed to a system thatis-dissipative with respect to

AP = (P + PAI)A — ¢ PAIIP' P (20)
A:= AP — (P + PAI)A + o PAIIP P = 0.
Using
—T =T
(oI, — AP =P, (21)
we obtain

PA{(I, + TA)PTP — (I, + IIA)} + o PAIIP P
— —PA(I, + AP P+ ¢PAUP P

—PAP' P — PAIAP' P + ¢PAIIP' P
—PAP'P + PAIl(c], — A)P' P

= 0.

A

Hence, (20) follows.
Multiplying (20) by PT from the right side, we obtain

the same supply function. Owing to this fact, without lossj — (p + pAIT)APT

of generality, we can assume that any dissipative system is

I,,-dissipative, i.e., it admits the quadratic functiohz as
its storage function.

(P4 PAIA(P + PAIl)"— (P + PAII) A(PAII)".

Furthermore, noting that (21) and = [P P hold, we

In projection-based model reduction methods, such @gptain
particular realization is actually useful for achieving dis-

sipativity preservation. This is because, for aly €
P Fo(PAPT, PB,CPT,D; 1) is negative definite if
and only if

PFo(A,B,C,D; I1,)P", P :=diag(P,1,,,)

oPATI(PAI)" — (P + PAI)A(PAI)" =0

which implies (P + PAI)A(PAI)T = oPAII(PAI)T.
Thus, (17) follows. ]
This lemma shows thatl in 3, admits aprojection-like

is negative definite. This implies that the reduced model factorization as in (17). Based on this fact, we can derive the

i . e .

I;-dissipative with respect t@ whenever the original system fsollowmg result on dissipativity preservation.

is I,-dissipative with respect t@). However, due to the  Theorem l:Let a linear systenk in (1) be given, and

complicated form of, in (6), the same conclusion for the SUPPOse that it id,,-dissipative with respect t@. If o >0

generalized singular perturbation approximation seems nofdd P € P**" satisfies

t[ivial._ln view _of this, we dgri\_/e a fcractablt_a re_pres_ent_atiqn_of im(CT) C im(PT),

A, which provides a clear insight into achieving dissipativity

preservation. then the generalized singular perturbation modglin (6)
Lemma 2:For any A € R**", P ¢ P**» ands ¢ R, IS [n-dissipative with respect t@).

the system matrixi € R**" in (7) admits the representation Proof: Owing to (22), it follows thatC' = C(P +

. PAII)T and D = D. Noting thatB = (P + PAII)B holds
_ T T I '
A= (P+PAIA(P + PALl)’ —oPAI(PALD)", (17) we can verify thatFg (A, B, C, D; I;,) is rewritten as
wherell € R"*" is defined as in (8). MoreoveR, + PAIl
has full row rank.
Proof: First, we prove thaP + PAII has full row rank,

(22)

PFo(A,B,C,D; 1,)PT — diag(20 PATI(PAIL)T, 0)
where P = diag(P + PAII, I,,,). Here

namely - -
PFo(A,B,C,D; 1,,)P
rank(P + PAII) = 7 (18) }—Q( ,B,C,D; 1)
holds. Note that is negative definite while
; T
rank((P + PAII)PTP) = rank(P) = 7.  (19) —diag(20 PAII(PAII) ", 0)

is negative semidefinite owing to the assumptioryof 0.
Thus, the claim follows. ]

This theorem shows that if the original system lis-
dissipative > with respect to a supply function, then the

holds. Here, if we assumewmk(P + PAII) < 7, then

rank((P + PAIT)PT P)
< min(rank(P + PAII), rank(P' P)) < .



generalized singular perturbation modg) is 1,-dissipative The error system factorization shown in Theorem 2, which
with respect to the same supply function as longras 0  can be applied even to unstable systems, provides a qualita-
and (22) hold. Note that (22) can easily be satisfied by addiniye insight on error analysis. That is, from tbescadedorm

the basis ofm(CT) to im(PT). of (23), we expect that the resultant approximation error will
be small if the norm ofP X, is sufficiently small, and the
norm of =, P or (EUA+C)?T is bounded. Furthermore, it

In this subsection, we analyze the approximation eITqg worth noting thak,, in (24) coincides with the generalized
caused by the generalized singular perturbation approximgngular perturbation approximant of

tion. In literature on the standard singular perturbation theory,

most of error analyses are developed in the time domain by Z(s) = C(sI, — A)~! (26)
using the asymptotic analysis [10], [13], or based on the . . A x
premise of the balanced realization [14], [8]. In contrast t@s;omated withP” € ;)n " i It of thi i
this, we develop error analysis in the Laplace domain without .I.O.W’ W‘I?hare reaZY_tO state a main 'r?}Sl:II':]O this siecnon_
relying on the balanced realization. First, we derive a novéftilizing Theorem 2 in conjunction wit eorem 1, we

representation of the error system as shown in the foIIowingStabIISh the following theorem that gives a solution to the
theorem. ructure-preserving model reduction problem in Section Il

as follows.
Theorem 2:Given a transfer matrixs in (13) ando € R, _ , ) ,
define the generalized singular perturbation approxintant Theorem 3:Let a linear systenk in (1) be given, and

B. Approximation Error Analysis

in (14) associated wittP € <™. Then suppose that it id,,-dissipative With_ respect tq). Assume
A that Q,,, < O,,, holds for (12). Giveno > 0, lety > 0
G(s) — G,(s; P) (23) such that
| Ea(s P)ﬁTFXU(s) o { A+ AT 44 YT, +CTC), if 6 =0 @7)
(2,(s; PYA + C)P' Po—'X,(s), if o # 0. "l A+ AT 447 (AAT 4+ CTC), otherwise.
holds, where Furthermore, letV = WT = O,, such that
Zo(s; P) := C(sl; — A)™1(P + PAII) + C1I AW+ WAT + BBT =0 (28)

X,(s):= (oI, — A)(sl, —A)'B-B (24)

with A andC are defined as in (7).
Proof: Denote the error system by

holds. If P € P**" satisfies

m(PT) (29)

im([B,CT]) €
D

i
R Vtr(®,) — tr(P®,PT), if 0 =0
G(s) = G5 P) = Colslysn — A)'B + D, = { o1 /(@) — (P, PT), otherwise, )
where A, = Diag(4, A), B. = [BT,BT|", C. = [-C,C] where
andD, = —D+D. Considering the similarity transformation
of the error system with &, := (oI, — AYW(al, — A)T € R"™*", (31)
T = { L —P } , Tl= [ I P } , then the generalized singular perturbation madglin (14)
0 In 0 I is I-dissipative with respect tQ) and satisfies
we have A .
o . G(o) = Go(o; P), [|G(s) = Go(s; P)|la, <ve  (32)
- A AP - PA PAIIP PB A ) : :
TAT ' = { 0 A } ; TBe = B whereG andG, are defined as in (13) and (14), respectively.

Proof: If X is I,-dissipativeX with respect toQ,
(25) then ¥, is I;-dissipative with respect t@), as shown in
 pTp_ B H . Theorem 1. Note thakE and X, are both stable because
wherel — PP =P P is used. Using (20), we have they arel,,- and I;-dissipative with respect t@ satisfying

CT'=[-C -CP+C],D.=-CIB,

AP — PA = —PAIIP P(oI, — A). Qyy = O, .
. ) Next we prove (32). Note thafll = 0 follows from (29).
Furthermore, using (21), we obtain From Theorem 2. we have
—~CP +C = Cll(al, — A). IG(5) = Go (55 P)l|

NPXsll,, if 6 =0

Thus, the block structure of (25) implies that the error system ||é ﬁTHH
< N f 7
N NEoA+ O)P |l |[Po—"Xy|l3,, otherwise

is given by the first one in (23). In addition
=T 15T —T )
P == (P +1AP") where =, and X, are defined as in (24). Note that (29)
follows from (21) if o # 0. Substituting this into (23), we implies that the feedthrough term étX, is equal to zero.
obtain the second one in (23). B Thus, from (30), we can ensure thHER X, ||, < eif 0 =0



and||Po~'X,||%, < e otherwise. In what follows, we prove Y
that AN B @

& -7 .
|(E5(s; P)A+ C)P |3, otherwise

follows from (29) and (27).
First, we consider the casedf= 0. Note that there always C. Numerical Example

exists somey > 0 such that (27) becausé + AT < O, In this subsection, we demonstrate the efficiency of our

holds. Here, owing to (29), the feedthrough term=af is  generalized singular perturbation approximation through a

equal to zero. Thus, from the bounded real lemma, it followsumerical example. Let us consider the following mass-
that ||EO'||H90 <7 holds if there existd” = VT > Oy such Spring-damper system

that . )
MG+ R¢+ Kq=Fu
VA4+ A"V (34) { y=Hgq
+y7t {V(P + PAIL)(P + PAI)TV + C’TC‘} < O0n. where M = O, denotes a mass matri = O, denotes
R a damper matrix, KX > O, denotes a spring stiffness
By the fact thatC' = CPT = C(P + PAII)" holds, the matrix, F € R"*™ denotes a matrix describing actuator
inequa”ty (34) with the solution oV = I’ft is rewritten as a”ocation’ andH € R™=*XY denotes a matrix describing

(P + PAT{A+ AT 4~ 1(I,, + CTC)}(P + PATI)T sensor allocation. This .second—orde.r system is qfter] usgd as
a primary model of flexible mechanical systems in vibration

Fig. 1. Depiction of Mass-Spring-Damper System.

(38)

T
—20 PAII(PATL)" < O, suppression control [15] and the rotor dynamics in power
whose negative semidefiniteness is ensured by (27) afySteém stabilization [16]. _ _
“2PAI(PAIDT < O,. Hence Let zo := [¢",¢"]T € R?” be the state variable of this
_7T system. Then, we have ti-dimensional systenx in (1),
1B6 ()P (40 < [1B0(8)ll20 < (35) with
follows. From an argument similar to this, we can verify that A= { 0 L, }
~-M7'K —-M~'R
(29) and (27) ensure
0
2 -1 = = = =

|Eo(s5 PYA+CYP .. < [1Bo(s: P) Al <7 (36) b= [ M-F }  e=[H 0], D=0
if ¢ # 0. Finally, G(0) = G,(o; P) is proven byX, () =0  Let us consider a case in which= 50 mass components
in (23). B are coupled. Here, we specify the coefficient matrices in (38)

Theorem 3 shows in (32) that the generalized singul@sM = diag(1,...,50), R = 0.2 x I5y and
perturbation approximation admits an a priori error bound. 9 _1
Note that the value ofy in (32) corresponds to an upper _ 1
bound for the gain of the state-to-output mapping of the K — -1 2 K F—HT — 0
generalized singular perturbation model. . . ’ :

Furthermore, to find? € P**" such that (22) and (29) 1 9 0

hold for a prescribed, we can use the following procedure: _ _ o _
First, we find the sef(\;, vi)}ieq1,....n) Of all eigenpairs of This system is depicted in Fig. 1, where we use the notation

,,,,

®, in (31), where it is assumed without loss of generalityy = [q1,-- -, ¢s0]". Furthermore, the Bode gain diagram of

that \; > ;41 and|v;|| = 1. Next, we findm € {1,...,n} this systemis plotted in Fig. 2 with the thin solid line. From

such that this figure, we can see that the system has a number of
\ T resonance frequencies.

2> m1+1 oot A bo= . (37) By applying Theorem 3, we approximate this system while

0" (Amg1+ -+ Ap), otherwise preserving system dissipativity. More specifically, we aim to

and construct,, = [vy, ..., vm] € PP<™. Finally, by the preserveV -dissipativity with respect to

Gram-Schmidt process, we deri@ € P"*" such that | -1 0 B _

iIn(PT) _ im([Vm,B,CT]). Q= [ 0 ,}/2 :| ;7= [lG(s)|ln. +0.01 = 2.81.

It 'S worth noting .that in the generallzed. sm_gular Perhis dissipativity preservation implies that the generalized
turbation approximation the resultant approximation error i
related to the sum of neglected eigenvalue$ pfas shown in
(37). The major significance of Theorem 3 is the theoretical sup |Gy (jw)| = [|Go(s) 3. < -

revelation that (i.e., the threshold of neglected eigenvalues weR

of ®,) can be used as a design parameter to regulate theBy varying the value in (37), which represents the thresh-

approximating quality of resultant approximate models. old of neglected eigenvalues df, in (31), we construct

§ingular perturbation approximant satisfies



IV. CONCLUSION

In this paper, based on a notion of generalized singular
perturbation approximation, we have developed a model
reduction method that preserves system dissipativity. It has
been found that the generalized singular perturbation approx-
imation can deal with not only the standard singular per-
turbation approximation but also the projection-based model
reduction as a special case. In this sense, this model reduction
provides a unified framework for major model reduction
methods. Finally, the efficiency of the model reduction has
been shown through an example of second-order systems.
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generalized singular perturbation models. For several values
of o > 0, Fig. 3 shows the resultant approximation error
versus the dimension of each approximate model. From thit/!
figure, we can see that the approximation error decreases as
the dimension of each model increases. Since the dimensid#l
of approximate models is a decreasing functionepthis
implies that the quality of approximate models can bejg]
appropriately captured by the neglected eigenvalue$ of
Furthermore, we notice that the approximate model With0
o = 0.1 gives the least approximation error among the values

of o that we have tried.
[11]

Finally, the Bode gain diagram of eadf-dimensional
approximate model is over-plotted in Fig. 2. From thi%I12]
figure, we can see that all approximate models appropriately
capture the peak gain of the original system while the models

_ i [13]
with larger value ofs (i.e., 0 = 10, oo) tend to cause
larger approximation error in the low-frequency range. This
trend can be recalled by the fact that the standard singul@f!
perturbation approximation (i.eq = 0) exactly preserves
the zero frequency gain, while the projection-based modgls]
reduction (i.e.,c = oo) preserves the infinite frequency
gain. It is found that the approximate model with= 0.1 [16]
most appropriately captures overall frequency properties of
the original system.

Technology (FIRST Program),” initiated by the Council for
Science and Technology Policy (CSTP).
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