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Abstract: In this paper, we propose a clustered model reduction method for interconnected

second-order systems evolving over undirected networks, which we call second-order networks.

In this model reduction method, network clustering, i.e., clustering of subsystems, is performed

according to cluster reducibility, which is defined as a notion of weak controllability of local

subsystem states. This paper clarifies that the cluster reducibility can be algebraically char-

acterized for second-order networks through the controller-Hessenberg transformation of their

first-order representation. By aggregating the reducible clusters, we obtain an approximate

model that preserves an interconnection topology among clustered subsystems. Furthermore,

we derive an H∞-error bound of the state discrepancy caused by the cluster aggregation. Fi-

nally, the efficiency of the proposed method is demonstrated through an example of large-scale

complex networks.

Key Words: Clustered model reduction; Interconnected second-order systems; Complex net-

works; Network clustering.

1. Introduction

Dynamical systems arising in science and engineering are generally modeled as interconnected sys-

tems. Examples of such interconnected systems include power networks, transportation networks,

communication networks and so forth; see [1, 2] for an overview. Since their interconnection topology

is often complex and large-scale, it is crucial to develop an approximation method for reducing their

complexity [3]. In addition, it is more desirable to preserve specific system properties, such as stabil-

ity, throughout the approximation. Especially for interconnected systems, the preservation of their

interconnection topology is one of the most important issues to be addressed. In fact, this kind of

network structure-preserving model reduction has the potential to significantly simplify the analysis

as well as control of large-scale interconnected systems while capturing their essential properties of

interest.
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Several network structure-preserving model reduction methods can be found in the literature. For

example, [4] has proposed a Krylov subspace method for interconnected systems, in which the Krylov

projection of each subsystem is performed to preserve the interconnection topology among subsys-

tems. However, this method requires a priori information on the partition of the whole system into

subsystems. Furthermore, no theoretical error evaluation is provided there. As a similar approach,

[5] has proposed a structured balanced truncation method for interconnected systems, in which the

balanced truncation approximation is applied to each subsystem. However, the relation between the

subsystem partition and the resultant approximation error is not theoretically discussed there.

Against this background, the authors have developed a clustered model reduction method for in-

terconnected linear systems, in which first-order subsystems are coupled over large-scale networks [6,

7]. In this method, we introduce the notion of cluster reducibility, which is defined as the uncontrol-

lability of disjoint subsets of state variables, called clusters, while providing an algorithm to find a set

of reducible clusters. By aggregating the reducible clusters with suitable aggregation coefficients, we

can construct an approximate model that preserves the interconnection topology among clusters as

well as the stability of systems. Furthermore, we have performed an error evaluation in terms of the

H2/H∞-norm.

In this paper, we consider generalizing our clustered model reduction method to interconnected

second-order systems evolving over undirected networks, which we call second-order networks. In

fact, many physical systems can be modeled by such interconnected second-order systems [8–12].

However, developing a model reduction method for second-order networks is not necessarily straight-

forward. This is because the application of usual model reduction as well as clustered model reduction

may destroy their second-order structure, i.e., the resultant aggregated models cannot be interpreted

as second-order networks. To resolve this matter, we are required to confine the class of aggregated

models to those with the second-order structure of interest. In this paper, we clarify that such ag-

gregated models can be obtained by applying a block-diagonally structured orthogonal projection to

a first-order representation of second-order networks. Furthermore, it turns out that the cluster re-

ducibility is algebraically characterized for second-order networks through the controller-Hessenberg

transformation of their first-order representation. This transformation also leads to a novel frequency

domain characterization of system controllability having good compatibility with an H∞-error eval-

uation.

Finally, it should be noted that, even though this paper focuses on the clustered model reduction

for linear systems in terms of the H∞-norm, the development of such an approximation method is

indeed fundamental to deal with nonlinear systems. This is because it is generally hard to approximate

nonlinear systems directly, while guaranteeing stability preservation and performing an error analysis.

One reasonable approach to a nonlinear system approximation is decoupling them into linear and

nonlinear components, and then approximating the linear component while retaining the nonlinear

one. In fact, this approach has been taken in [13, 14] to perform an error analysis for a nonlinear

system approximation on the premise that an H∞-model reduction method for linear systems is

available. Thus, towards the systematic approximation of nonlinear second-order networks, it is

crucial to develop a clustered model reduction method to construct an aggregated model whose

approximation quality is specified in terms of the H∞-norm.

The remainder of this paper is structured as follows: In Section 2, we provide theoretical results

on the clustered model reduction for second-order networks. More specifically, in Section 2.1, we

first formulate a clustered model reduction problem for second-order networks, and then we propose

its solution method in Section 2.2, while providing a simple example that explains the intuition

of clustered model reduction. In Section 3, we demonstrate the efficiency of the proposed solution

method through an example of large-scale complex networks. Finally, concluding remarks are provided

in Section 4.

Notation. We denote the set of real numbers by R, the n-dimensional identity matrix by In, the ith

column of In by eni . For a set of natural numbers I ⊆ {1, . . . , n}, let enI ∈ Rn×|I| denote the matrix

composed of the column vectors of In compatible with I. and the l∞-induced norm of a matrix
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M ∈ Rn×m is defined by

∥M∥l∞ := max
i∈{1,...,n}

m∑
j=1

|Mi,j |

where Mi,j denotes the (i, j)-element of M . Furthermore, we denote the block diagonal matrix having

matrices M1, . . . ,Mn on its block diagonal by diag(M1, . . . ,MN ). Finally, the H∞-norm of a stable

transfer matrix G is defined by

∥G(s)∥H∞ := sup
ω∈R

∥G(jω)∥.

2. Theoretical Results

2.1 Clustered Model Reduction Problem for Second-Order Networks

In this paper, we study the following class of interconnected second-order systems:

Σ : ẍ+Dẋ+Kx = fu (1)

where x ∈ Rn and u ∈ R denote the state variable and control input, respectively, D = DT ∈ Rn×n

and K = KT ∈ Rn×n are assumed to be positive definite, and f ∈ Rn. In the following, we refer to Σ

in (1) as a second-order network. This class of systems represents interconnected mass-spring-damper

systems evolving over undirected networks, which are typified by spatially discretized flexible beams

[15] and linearized swing equations for power network models [12]. For simplicity of explanation, we

only consider single-input systems while a generalization to multi-input systems can be done by taking

an approach similar to [16]. Note that any second-order network Σ is stable owing to the positive

definiteness of D and K; see [11] for its stability characterization. We consider the system behavior

around some equilibrium state of a nonlinear second-order network, and so we focus on the linearized

system Σ.

Let us formulate a problem of clustered model reduction for Σ in (1). To this end, we first introduce

a notion of network clustering [6, 7] for dynamical systems as follows:

Definition 1. Let L := {1, . . . , L}. The family of an index set {I[l]}l∈L is called a cluster set, each

of whose elements is referred to as a cluster, if each element I[l] is a disjoint subset of {1, . . . , n}
and satisfies

∪
l∈L I[l] = {1, . . . , n}. Furthermore, an aggregation matrix compatible with {I[l]}l∈L is

defined by

P := diag(p[1], . . . , p[L])Π ∈ RL×n (2)

where p[l] ∈ R1×|I[l]| such that ∥p[l]∥ = 1, and the permutation matrix Π is defined as

Π := [enI[1]
, . . . , enI[L]

]T ∈ Rn×n, enI[l]
∈ Rn×|I[l]|.

Using the aggregation matrix P in (2), we define the aggregated model of Σ in (1) by

Σ̂ :

{
ξ̈ + PDPTξ̇ + PKPTξ = Pfu

x̂ = PTξ.
(3)

Each state of the aggregated model Σ̂ is an approximant of the clustered states given by (enI[l]
)Tx ∈

R|I[l]|. The trajectory of each state of Σ̂ aims to trace the trajectory of a kind of centroid compatible

with the clustered states of Σ. Note that the aggregated model Σ̂ is stable for any P because PDPT

and PKPT are also positive definite. In this paper, we address the following problem of clustered

model reduction for second-order networks:

Problem 1. Consider a second-order network Σ in (1). Given a constant ϵ ≥ 0, find an aggregation

matrix P in (2) such that the aggregated model Σ̂ in (3) satisfies

∥g(s)− ĝ(s)∥H∞ ≤ ϵ (4)

where

g(s) := (s2In + sD +K)−1f, ĝ(s) := PT(s2IL + sPDPT + PKPT)−1Pf (5)

denote the transfer functions of Σ and Σ̂, respectively.

1103



In Problem 1, we have formulated the problem of finding an aggregated model that satisfies an error

bound in terms of the H∞-norm. In traditional model reduction, such as the balanced truncation,

the Krylov projection, and the Hankel norm approximation, each state of the resultant approximants

is usually obtained as a linear combination of all states of the original system, i.e., the transformation

matrix is a full matrix [3]. This clearly contrasts with our problem formulation, where P in (2) is

block-diagonally structured.

2.2 Solution Method

2.2.1 Controllability Characterization via Controller-Hessenberg Transformation

In this subsection, we address the clustered model reduction problem from a viewpoint of local un-

controllability of subsystem states. To this end, we represent Σ in (1) by the first-order form

Σ :

{
Ẋ = AX +Bu

x = CX
(6)

where X := [xT, ẋT]T ∈ R2n, and

A :=

[
0 In

−K −D

]
∈ R2n×2n, B :=

[
0

f

]
∈ R2n, C :=

[
In 0

]
∈ Rn×2n.

In the following, N := 2n is used for convenience of notation. In control theory, Σ in (6) is said to be

controllable if there exists an input function u such that the state X is moved from any initial state

to any other final state in a finite time interval. One best-known characterization of controllability

is the Kalman rank condition, i.e., Σ is controllable if and only if [B,AB, . . . , AN−1B] has full row

rank [3]. However, the Kalman rank condition is not necessarily useful for model reduction because

it cannot capture the controllability of systems quantitatively. Such a quantitative characterization

of controllability plays an important role in performing an approximation error analysis.

Let us seek another characterization of controllability that has good compatibility with an error

analysis for clustered model reduction. To this end, we first provide the following lemma that gives a

particular realization of Σ, called the controller-Hessenberg form:

Lemma 1. For any a second-order network Σ in (6), there exists a unitary matrix H ∈ RN×N such

that A := HTAH ∈ RN×N and B := HTB ∈ RN are in the form of

A =



α1,1 α1,2 · · · · · · α1,N

α2,1 α2,2 α2,3 · · · α2,N

0
. . .

. . .
. . .

...
...

. . .
. . .

. . .
...

0 · · · 0 αN,N−1 αN,N

 , B =


β1

0

0
...

0

 . (7)

Furthermore, the dimension of the controllable subspace of Σ is given by

ν :=

 min
i∈{1,...,N−1}

{i : αi+1,i = 0}, if
∏N−1

i=1 αi+1,i = 0

N, otherwise.
(8)

Proof. As shown in Chapter 11.2.2 of [3], the application of the Arnoldi procedure to the pair (A,B)

yields the controller-Hessenberg form (A,B). To show that the dimension of the controllable subspace

is equal to ν in (8), let us consider the partition of (A,B) as

A =

[
A1 A1,2

0 A2,2

]
, B =

[
B1

0

]
.

where A1 ∈ Rν×ν and B1 ∈ Rν . From the block structure of (A,B), it is readily follows that
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rank [B,AB, . . . ,AN−1B] = rank [B1,A1,1B1, . . . ,A
ν−1
1,1 B1] ≤ ν.

Thus, it suffices to show that the pair (A1,1,B1) is controllable. From the properties of the Arnoldi

procedure shown in Chapter 10.4.5 of [3], we see that the first ν columns of H, denoted by H1 ∈ RN×ν ,

span the controllable subspace of (A,B), namely

imH1 = im[B,AB, . . . , AN−1B] = im [B,AB, . . . , Aν−1B]

where the second equality stems from the A-invariance of the controllable subspace. From the fact

that H1H
T
1 ∈ RN×N is the orthogonal projection matrix onto imH1, it follows that

H1H
T
1 A

k−1B = Ak−1B, ∀k ∈ {1, . . . , ν}.

Note that A1,1 = HT
1 AH1 and B1 = HT

1 B. Thus, we have

rank [B1,A1,1B1, . . . ,A
ν−1
1,1 B1] = rankHT

1 [B,AB, . . . , Aν−1B] = ν,

which proves the controllability of (A1,1,B1).

Note that the controller-Hessenberg form of Σ in Lemma 1 has the serially cascaded structure as

shown in (7). From this particular structure, it follows that Σ is controllable if and only if αi+1,i ̸= 0

for all i ∈ {1, . . . , N−1}. Based on the controller-Hessenberg form of Σ, we derive a frequency domain

characterization of controllability that has good compatibility with model reduction as follows:

Lemma 2. Given a second-order network Σ in (6), consider A and B with H shown in Lemma 1.

Define

Φ := Hdiag(γ1, . . . , γN ) ∈ RN×N (9)

where

γi :=
∥∥(eNi )T(sIN − A)−1B

∥∥
H∞

.

Then, Σ is controllable if and only if Φ is nonsingular.

Proof. Note that the uncontrollability of Σ is equivalent to the existence of a nonzero vector η ∈ RN

such that

ηT(sIN −A)−1B = 0. (10)

Thus, to prove the claim, it suffices to show that (10) is equivalent to

ηTΦ = 0. (11)

Let

X(s) := (sI2n − A)−1B, (12)

whose ith element is denoted by Xi. Consider the dimension of the controllable subspace of Σ, denoted

by ν in (8), and let

J := {1, . . . , ν}, J := {ν + 1, . . . , N}.
Since Xi(s) ≡ 0 for i ∈ J , we have

X(s) = eNJ (eNJ )TX(s). (13)

Noting that

(sI2n −A)−1B = HX(s),

we see that (10) is equivalent to

ηTHeNJ (eNJ )TX(s) = 0. (14)

The functions Xi(s) for i ∈ J are linearly independent because any two of them do not have the same

relative degree, i.e., the difference of degrees between the denominator and the numerator polynomials,

due to the serially cascaded structure in (7). This fact implies that (14) is equivalent to ηTHenJ = 0.

On the other hand, from γi = ∥Xi∥H∞ leading to γi = 0 for i ∈ J , it follows that

diag(γ1, . . . , γN ) = eNJ (eNJ )Tdiag(γ1, . . . , γN ).

Thus, (11) is also equivalent to ηTHeNJ = 0. Hence, the claim follows.
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Lemma 2 provides the characterization of controllability in the frequency domain. The index

matrix Φ in (9) is composed of the unitary transformation matrix H weighted by the maximal gains

of the input-to-state mapping in the controller-Hessenberg form. Using this lemma, we can prove the

following result on the exact clustered model reduction:

Theorem 1. Given a second-order network Σ in (6), consider a cluster set {I[l]}l∈L. For each cluster

I[l], if there exist p[l] ∈ R1×|I[l]|, ϕ∗
1[l] ∈ R1×2n and ϕ∗

2[l] ∈ R1×2n such that ∥p[l]∥ = 1 and

(enI[l]
)TΦ1 = pT[l]ϕ

∗
1[l], (enI[l]

)TΦ2 = pT[l]ϕ
∗
2[l] (15)

where Φ1 ∈ Rn×2n and Φ2 ∈ Rn×2n denote the upper and lower half components of Φ in (9),

respectively, then the aggregated model Σ̂ in (3) given by P in (2) satisfies

g(s) = ĝ(s), (16)

where g and ĝ are defined as in (5). Furthermore, if (15) holds, then it follows that

p[l] =

(
(enI[l]

)TK−1f

∥(enI[l]
)TK−1f∥

)T

, ∀l ∈ L. (17)

Proof. Using P := diag(P, P ), we can verify that Σ̂ in (3) is represented as the first-order realization

Σ̂ :

{
Ξ̇ = PAPTΞ + PBu

x̂ = CPTΞ

where Ξ := [ξT, ξ̇T]T ∈ R2L. Note that (15) holds for each I[l] if and only if there exists p[l] ∈
R(|I[l]|−1)×|I[l]| such that [pT[l], p

T
[l]]

T is unitary and

PΦ =

[
PΦ1

PΦ2

]
= 0 (18)

where

P := diag(P , P ) ∈ R2(n−L)×2n, P := diag(p[1], . . . , p[L])Π ∈ R(n−L)×n. (19)

From the construction of P and P, we see that [PT,PT
]T is unitary, i.e., PTP + PTP = I2n. Thus,

the similarity transformation of g − ĝ by

V =

[
P I2L
I2n 0

]
, V −1 =

[
0 I2n
I2L −P

]
yields

V AeV
−1 =

[
PAPT PAPTP

0 A

]
, V Be =

[
0

B

]
, CeV

−1 =
[
CPT CPTP

]
where

Ae :=

[
A 0

0 PAPT

]
, Be :=

[
V

−PB

]
, Ce :=

[
C CPT

]
.

This block structure implies that the error system admits the factorization of

g(s)− ĝ(s) = Θ(s)PTP(sI2n −A)−1B, Θ(s) := CPT(sI2L −PAPT)−1PA+ C. (20)

Note that (18) is equivalent to

P(sI2n −A)−1B = 0, (21)

which can be confirmed by the equivalence between (10) and (11). Hence, (16) is verified. Finally,

substituting s = 0 to (21), we have −PA−1B = 0, which can be rewritten as[
P 0

0 P

] [
K−1f

0

]
= 0.

Thus, p[l](e
n
I[l]

)TK−1f = 0 holds for any l ∈ L. This proves that p[l] is given by (17).
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Fig. 1. Exact clustered model reduction of a simple second-order network.

As shown in Theorem 1, the aggregation of clusters satisfying (15) causes no approximation error.

This exact dimension reduction is based on the elimination of local uncontrollable subspace character-

ized by (15). An intuitive interpretation of this exact clustered model reduction is explained through

the following example:

Example. Let us consider a second-order network Σ in (1) given by

D =


1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

 , K =


3 −1 −1 0 0

−1 3 0 −2 0

−1 0 3 0 −2

0 −2 0 2 0

0 0 −2 0 2

 , f =


1

0

0

0

0


whose interconnection topology is depicted in the left of Fig. 1, where the ith element of x is denoted

by xi. The symmetric topology with respect to permutation suggests that the trajectories of x2 and

x3, as well as those of x4 and x5 are identical if

x2(0) = x3(0), ẋ2(0) = ẋ3(0), x4(0) = x5(0), ẋ4(0) = ẋ5(0),

or equivalently

g2(s) = g3(s), g4(s) = g5(s)

where gi denotes the ith element of g in (5). Thus, the subspaces x2−x3 and x4−x5 are uncontrollable,

i.e., x2 and x3 as well as x4 and x5 can be exactly aggregated for reduction. In the following, we

characterize this local uncontrollability by using Theorem 1.

By the controller-Hessenberg transformation of Σ, we obtain A and B in (7) with its transformation

matrix H, which lead to the index matrix

Φ =



0 1.000 0 0 0 0 0 0 0 0

0 0 0 1.000 0 0 0 0 0 0

0 0 0 1.000 0 0 0 0 0 0

0 0 0 0 0 1.000 0 0 0 0

0 0 0 0 0 1.000 0 0 0 0

−0.768 0 0 0 0 0 0 0 0 0

0 0 −0.234 0 0 0 0 0 0 0

0 0 −0.234 0 0 0 0 0 0 0

0 0 0 0 −0.226 0 0 0 0 0

0 0 0 0 −0.226 0 0 0 0 0


.

Note that the second and third row vectors, the fourth and fifth row vectors, the seventh and eighth

row vectors, and the ninth and tenth row vectors are identical, respectively. This implies that, for

each of the clusters

I[1] = {1}, I[2] = {2, 3}, I[3] = {4, 5},

which are depicted by the chain circles in Fig. 1, there exist ϕ∗
1[l] ∈ R1×10 and ϕ∗

2[l] ∈ R1×10 such that

(15) holds with
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p[1] = 1, p[2] =

[
1√
2

1√
2

]
, p[3] =

[
1√
2

1√
2

]
,

which indeed comply with (17) since K−1f ∈ R5 coincides with the all-ones vector. Thus, the

aggregation matrix P in (2) is given by

P =


1 0 0 0 0

0
1√
2

1√
2

0 0

0 0 0
1√
2

1√
2

 .

Accordingly, we obtain the aggregated model Σ̂ in (3) with

PDPT =

 1 0 0

0 1 0

0 0 1

 , PKPT =

 3 −
√
2 0

−
√
2 3 −2

0 −2 2

 , Pf =

 1

0

0

 ,

which satisfies (16). The interconnection topology of this aggregated model is depicted in the right

of Fig. 1, where the ith element of ξ is denoted by ξi.

2.2.2 Approximation Error Analysis in terms of the H∞-Norm

In Section 2.2.1, we have developed the exact clustered model reduction method by aggregating

clusters such that (15). Even though such an exact approximation is indeed desirable, the reduction

of system dimensions should be restrictive. Thus, in the following, we aim at enhancing this result to

that with a small approximation error. To perform an approximation error analysis in terms of the

H∞-norm, we define the following notion of cluster reducibility, which is defined as weak controllability

of local subsystem states:

Definition 2. Let a second-order network Σ in (6) be given. A cluster I[l] is said to be θ-reducible if

there exist ϕ∗
1[l] ∈ R1×2n and ϕ∗

2[l] ∈ R1×2n such that

max

{∥∥∥(enI[l]
)TΦ1 − pT[l]ϕ

∗
1[l]

∥∥∥
l∞

,
∥∥∥(enI[l]

)TΦ2 − pT[l]ϕ
∗
2[l]

∥∥∥
l∞

}
≤ θ, θ ≥ 0 (22)

where Φ1 ∈ Rn×2n and Φ2 ∈ Rn×2n denote the upper and lower half components of Φ in (9),

respectively, and p[l] is defined as in (17).

In Definition 2, the constant θ represents a quantitative index of cluster reducibility, i.e., a quanti-

tative index for the controllability of local subsystem states. Obviously, since (17) holds, the relaxed

condition in (22) includes the exact condition in (15), and it is equivalent to (15) if θ = 0. By the

aggregation of θ-reducible clusters, we obtain the following aggregated model satisfying an H∞-error

bound that has a linear relation with the value of θ:

Theorem 2. Let a second-order network Σ in (6) be given, and define an aggregation matrix P in (2)

with (17). If all clusters are θ-reducible, then the aggregated model Σ̂P in (3) is stable and satisfies

g(0) = ĝ(0), ∥g(s)− ĝ(s)∥H∞ ≤ σ

√
2
∑L

l=1|I[l]|(|I[l]| − 1) θ (23)

where g and ĝ are defined as in (5), and

σ :=
∥∥PT(s2IL + sPDPT + PKPT)−1[PK PD]− [In 0]

∥∥
H∞

.

Proof. Using the factorization of (20), we have

∥g(s)− ĝ(s)∥H∞ ≤ ∥Θ(s)PT∥H∞∥P(sI2n −A)−1B∥H∞ .

Note that
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PAPT
=

[
0 PP

T

−PKP
T −PDP

T

]
=

[
0 0

−PK −PD

]
PT

.

Thus, it follows that

∥Θ(s)PT∥H∞ =
∥∥∥{−PT(s2IL + sPDPT + PKPT)−1[PK PD] + C

}
PT
∥∥∥
H∞

= σ.

In the following, we use the notation of

P(sI2n −A)−1B =

[
PG1(s)

PG2(s)

]
,

[
G1(s)

G2(s)

]
:= (sI2n −A)−1B.

In this notation, let us evaluate

∥P(sI2n −A)−1B∥H∞ ≤

√√√√ L∑
l=1

∥∥∥p[l](enI[l]
)TG1(s)

∥∥∥2
H∞

+

L∑
l=1

∥∥∥p[l](enI[l]
)TG2(s)

∥∥∥2
H∞

To this end, we first prove that

∥CGi(s)∥H∞ ≤ √
p ∥CΦi∥l∞ , i ∈ {1, 2} (24)

for any C ∈ Rp×n. Note that

∥CGi(s)∥H∞ ≤

√√√√ p∑
k=1

∥CkGi(s)∥2H∞
≤ √

pmax
k

∥CkGi(s)∥H∞ , i ∈ {1, 2}

where Ck ∈ R1×n denotes the kth row of C. Furthermore, it follows that

CkG1(s) =

n∑
i=1

Ck,i

n∑
j=1

Hi,jXj(s), CkG2(s) =

n∑
i=1

Ck,i

2n∑
j=n+1

Hi,jXj(s)

where Hi,j and Ci,j denote the (i, j)-elements of H and C, respectively, and Xj denotes the jth

element of X defined as in (12). Therefore, we have

∥CkG1(s)∥H∞ =

∥∥∥∥∥∥
n∑

i=1

Ck,i

n∑
j=1

Hi,jXj(s)

∥∥∥∥∥∥
H∞

≤
n∑

j=1

∣∣∣∣∣
n∑

i=1

Ck,iHi,j

∣∣∣∣∣ γj = ∥CkΦ1∥l∞ ,

where γj = ∥Xj∥H∞ has been used. Similarly, we have ∥CkG2∥H∞ ≤ ∥CkΦ2∥l∞ . By the definition of

the l∞-induced norm, it follows that

max
k

∥CkΦi∥l∞ = ∥CΦi∥l∞ , i ∈ {1, 2}.

Hence, (24) is verified. Using (24) with C = p[l](e
n
I[l]

)T ∈ R(|I[l]|−1)×n, we obtain∥∥∥p[l](enI[l]
)TGi(s)

∥∥∥
H∞

≤
√
|I[l]| − 1

∥∥∥p[l](enI[l]
)TΦi

∥∥∥
l∞

, i ∈ {1, 2}.

The θ-reducibility of all clusters ensures that

∥∆i[l]∥l∞ ≤ θ, ∆i[l] := (enI[l]
)TΦi − pT[l]ϕ

∗
i[l], i ∈ {1, 2}.

Thus, we have∥∥∥p[l](enI[l]
)TΦi

∥∥∥
l∞

= ∥p[l]∆i[l]∥l∞ ≤ ∥p[l]∥l∞∥∆i[l]∥l∞ ≤
√
|I[l]| θ, i ∈ {1, 2},

which leads to

∥P(sI2n −A)−1B∥H∞ ≤
√
2
∑L

l=1|I[l]|(|I[l]| − 1) θ.

This proves the bound in (23). Finally, g(0) = ĝ(0) is proven by (17), which implies P(sI2n−A)−1B =

0 for s = 0.
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Fig. 2. Interconnection topologies of the original second-order network (300
nodes) and its aggregated model (42 clusters).

Theorem 2 shows a linear relation between the approximation error and the value of θ. Note that θ

represents the degree of cluster reducibility, i.e., it captures the weak controllability of local subsystem

states in a quantitative manner. By this theorem, we can regulate the approximation quality of the

resultant aggregated models using θ as a design parameter.

3. Application to Complex Networks

In this section, we demonstrate the efficiency of Theorem 2 through an example of complex networks.

We deal with a second-order network Σ in (1) evolving over the Holme-Kim model [1] composed of

300 nodes and about 600 edges, whose interconnection topology is depicted in the left of Fig. 2. This

network is an extension of the Barabasi-Albert model, which is one of the best-known complex network

models, and has a scale-free and small-world property, i.e., most nodes are not directly interconnected

with the other nodes while most nodes have short-length paths from every other node, as well as a

high cluster coefficient. As complying with the Holme-Kim model, we specify K ∈ R300×300 as

Ki,j =

{
−1, if the ith and jth nodes are connected

0, otherwise,
Ki,i =

{
1−

∑500
j=1,j ̸=1 k1,j , i = 1

−
∑500

j=1,j ̸=i ki,j , i ̸= 1,

where Ki,j denotes the (i, j)-element of K. This construction implies that only the first mass com-

ponent is subject to the fixed boundary condition while the others are subject to free boundary

conditions. Furthermore, we set the other system parameters as D = 0.1× I300 and f = e3001 .

Against each value of θ, in the left of Fig. 3, we plot the resultant number of nodes of the aggregated

model. Furthermore, in the right of Fig. 3, we plot the resultant relative approximation error. These

figures show that, as θ decreases, the dimension of the aggregated model increases monotonically,

and the approximation error decreases almost monotonically. This result confirms that the value of

θ successfully captures the approximation quality of the resultant aggregated models. By decreasing

the value of θ, we find that, when θ = 1.762, the original 600-dimensional second-order network is

reduced to an 84-dimensional version, and the relative approximation error turns out to be

∥g(s)− ĝ(s)∥H∞

∥g(s)∥H∞

= 0.0481.

The interconnection topology of the aggregated model is depicted in the right of Fig. 2, where a set

of edges that are essential to the input-to-state mapping is highlighted.

Finally, we show the impulse response of the original second-order network and the 84-dimensional

and 4-dimensional aggregated models. In Fig. 4, we plot the trajectories of x1 and x2 of the original

system along with those of the aggregated models. From this figure, we can see that the behavior of
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Fig. 3. Resultant number of clusters and relative approximation error versus
the value of θ.
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Fig. 4. Impulse responses of the first and second mass components.

the original states is well approximated by that of the 84-dimensional aggregated model, while the

4-dimensional version captures only the rough behavior of the original states. From this example, we

can conclude that the proposed clustered model reduction method successfully extracts meaningful

cluster interconnections from a viewpoint of the input-to-state mapping approximation.

4. Conclusions

In this paper, we have developed a clustered model reduction method for interconnected second-order

systems evolving over undirected networks. In this method, network clustering, i.e., clustering of

subsystems, is performed according to a kind of weak controllability of local subsystem states, which

we call cluster reducibility. It has been found that the cluster reducibility is characterized for second-

order networks based on the controller-Hessenberg transformation of their first-order representation,

and the aggregation of the reducible clusters yields an aggregated model that preserves a network

structure among clustered subsystems. Furthermore, we have shown that the resultant aggregated

model satisfies an H∞-error bound of the state discrepancy caused by the cluster aggregation. Finally,

the efficiency of the proposed method has been demonstrated by an example of complex networks.
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