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Abstract. Large fluctuation of electric power due to high penetration
of renewable energy sources such as photovoltaic and wind power gen-
eration increases the risk to make the whole power network system
unstable. The conventional frequency control called load frequency con-
trol is based on PID (proportional-integral-derivative) control or more
advanced centralized and decentralized/distributed control. If we could
more effectively use information on the state of the other neighbor gen-
erators, we can expect to make the whole system more robust against
the large frequency fluctuation. This paper proposes a fundamental
framework towards the design of hierarchical distributed stabilizing
controllers for a network of power generators and loads. This novel
type of distributed controller, composed of a global controller and a
set of local controllers, takes into account the effect of the interaction
among the generators and loads to improve robustness for the variation
of locally stabilizing controllers.

1 Introduction

In the past decade, renewable energy sources such as photovoltaic (PV) and wind
power generation has been intensively introduced into power network systems all
over the world. In this trend, by 2030 in Japan, it is planned to introduce PV and
wind power generation systems that can cover about 30% and 17% of total power
consumption, respectively. Since such renewable energy inevitably includes large and
intermittent fluctuation of electric power, it possibly makes the power network system
unstable even if frequency control called the load frequency control (LFC) or auto-
matic generation control (AGC) is implemented [1]. These control inputs are applied
to a generator as a supply valve of the fuel such as oil or coal, in order to regulate
the angular velocity of the rotor of the generator to the specified frequency such as
50Hz. This is based on the feedback information on the angular velocity as well as
angular position of the rotor.

In general, LFC is implemented as simple PID or more advanced centralized con-
trol of each individual generator [2]. On the other hand, if we could exploit more
information on the state of other generators, we can expect to make the whole system
more robust against the large fluctuation of electric power [3,4]. Actually, a number
of centralized automatic frequency control methods have been proposed based on
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advanced control theory (see e.g., [5], [6]). However, it is more desirable to use infor-
mation from neighboring generators and to make the controller as simple as possible
in general. In view of this, one possible approach is to develop a distributed stabiliza-
tion method for power networks, where the spatially-distributed controller stabilizes
each generator by utilizing information on only the state of its neighbor generators.

Against such a background, distributed frequency control methods have been most
recently developed (see e.g., [8]), where the distributed consensus theory has been ap-
plied to prove the stability of closed-loop systems. However, it has not yet been fully
understood how the variation of individual controllers in this kind of distributed con-
trol affects the stability of the whole closed-loop system. Thus, towards constructing
a robust framework of power systems, it is important to develop a more sophisticated
control system explicitly taking into account the interaction among power generators
and loads.

As a first step to this direction, this paper proposes a basic framework to de-
sign a control system implemented as hierarchical distributed stabilization for power
networks. To this end, we first derive a state-space expansion model of the original
network system that allows us to deal with the state variables associated with the
disjoint subsystems and the interaction among subsystems independently. This state-
space expansion is similar to one in [9], where an expansion is used to decouple the
interconnection among subsystems approximately. Next, based on this model, we con-
struct local controllers, each of which stabilizes the corresponding disjoint subsystem,
and a global controller, which compensates interference among local controllers with
information on the interaction among subsystems. It will be shown that this struc-
tured distributed controller, called a hierarchical distributed stabilizing controller,
can realize robust stabilization tolerating the variation of local controllers. Finally,
a numerical simulation demonstrates the efficiency of the proposed hierarchical dis-
tributed stabilizing controller.

Notation We denote the set of real numbers by R, the n-dimensional identity matrix
by In, and the cardinality of a set I by |I|. Furthermore, we denote the block-diagonal
matrix having matrices M1, . . . ,MN on its diagonal blocks by diag(M1, . . . ,MN ). In
particular, if not confusing, we express it as diag(Mi). A square matrixA (respectively,
a transfer matrix G) is said to be stable if all eigenvalues of A (poles of G) are in the
open left-half plane. Finally, the H∞-norm of a stable transfer matrix G is defined
by ‖G‖H∞ := supω∈R

‖G(jω)‖.

2 Problem Formulation

2.1 Power Network Model

Let us consider a power network constructed by the interconnection of nG generators
and nL loads. We denote the index sets of generators and loads by

G := {1, . . . , nG}, L := {1 + nG, . . . , nL + nG},
respectively. In what follows, the term of “the ith node” represents either the ith
generator or the ith load, i.e., either i ∈ G or i ∈ L. Furthermore, the index set of
nodes next to the ith node, i.e., physically connected to the ith node, is denoted by
Ni.

First, we introduce a dynamical model of generators. Each generator consists of a
rotational mass-damper system with a turbine, whose dynamics is given by

Miδ̈i = −Diδ̇i − ρi +
∑
j∈Ni

Yi,j sin(δj − δi), i ∈ G (1)
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where δi denotes the angle on the rotating system of coordinates, ρi denotes the
mechanical power of turbine generation, Yi,j denotes the admittance between the ith
and jth nodes multiplied by their voltage amplitude, Mi denotes a mechanical inertia,
and Di denotes a damping coefficient. The dynamics of the turbine is modeled as

Tiρ̇i = −ρi + ui (2)

where Ti denotes a time constant, and ui denotes a control input corresponding to a
command for valve position. We suppose that all the variables δi, δ̇i, ρi, and ui are
defined as deviations from their equilibrium state (steady state). This means that we

consider the stabilization problem at δi = 0, δ̇i = 0, ρi = 0, and ui = 0.
For a state variable as xi := [δi, δ̇i, ρi]

T ∈ R
3, the dynamics of the ith generator

can be represented as

ẋi = Eixi + fi(xi, xNi ) + giui, i ∈ G (3)

where xNi denotes the set of states corresponding to Ni, and

Ei :=

⎡
⎣ 0 1 0
0 −Di

Mi
− 1

Mi

0 0 − 1
Ti

⎤
⎦ , fi(xi, xNi) :=

⎡
⎣ 0∑

j∈Ni
Yi,j sin(δj − δi)

0

⎤
⎦ , gi :=

⎡
⎣ 0

0
1
Ti

⎤
⎦ . (4)

In what follows, we suppose that the measurement output is given as the angle and
the angular velocity of generators, namely

yi = hixi, hi :=

[
1 0 0
0 1 0

]
, i ∈ G. (5)

Similarly to the generator dynamics, for a state variable xi := [δi, δ̇i]
T ∈ R

2, the dy-
namics of the ith load can be modeled as a rotational mass-damper system described
by

ẋi = Eixi + fi(xi, xNi), i ∈ L (6)

where

Ei :=

[
0 1
0 −Di

Mi

]
, fi(xi, xNi) :=

[
0∑

j∈Ni
Yi,j sin(δj − δi)

]
. (7)

Then, by defining the state variable x := [xT
1 , . . . , x

T
J ]

T ∈ R
n with J := nG + nL

and n := 3nG + 2nL, the dynamics of the power network is given as the nonlinear
system

Σnl :

{
ẋ = F (x) +Bu
y = Cx

(8)

where y := [y1, . . . , ynG ]T ∈ R
2nG

, u := [u1, . . . , unG ]T ∈ R
nG

and

F (x) := diag(E1, . . . , EJ)x+

⎡
⎢⎣

f1(x1, xN1)
...

fN (xN , xNJ )

⎤
⎥⎦ ∈ R

n,

B :=

[
diag(g1, . . . , gnG)

0

]
∈ R

n×nG

, C :=
[
diag(h1, . . . , hnG) 0

] ∈ R
2nG×n.

(9)

Next, we derive a linearized approximate model of this nonlinear system around
the equilibrium x = 0. By direct calculation, the Jacobian matrix of F is obtained as

A :=
∂F

∂x

∣∣∣∣
x=0

= diag(E1, . . . , EJ) + diag(k1, . . . , kJ)Πdiag(l1, . . . , lJ) ∈ R
n×n (10)
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where

ki :=

{
1
Mi

[0 1 0]
T
, i ∈ G

1
Mi

[0 1]T, i ∈ L, li :=

{
[1 0 0], i ∈ G
[1 0], i ∈ L,

and Π = ΠT is a weighted graph Laplacian [7] whose (i, j)-element is given as

Πi,j =

⎧⎨
⎩

∑
j∈Ni

Yi,j , i = j
−Yi,j , i �= j, j ∈ Ni

0, otherwise.
(11)

Thus, the linearized approximate model of (8) is given by

Σ̄ :

{
˙̄x = Ax̄+Bu
ȳ = Cx̄

(12)

where A is defined as in (10), and B and C are defined as in (9).

2.2 Hierarchical Distributed Stabilization Problem

In this subsection, we formulate a distributed stabilization problem for the linearized
approximate model Σ̄ in (12). To this end, we consider dividing (12) into N subnet-
works (subsystems) composed of a set of generators and loads. Hereafter, we express
the dynamics of the ith subsystem by

Σi :

{
ẋi = Ai,ixi +

∑N
j �=i Ai,jxj +Biui +Riv

yi = Cixi,
i ∈ N (13)

where Ai,j ∈ R
ni×nj , Bi ∈ R

ni×mi , Ci ∈ R
pi×ni , Ri ∈ R

ni×r, and N := {1, . . . , N}.
The system matrices with the subscript of i correspond to the submatrices of those
in (12) compatible with Gi ∪ Li, where Gi ⊆ G and Li ⊆ L denote the index sets
of generators and loads belonging to the ith subnetwork. Furthermore, the term of
v ∈ R

r expresses an additional input signal, to be explained below in detail. Although
it may be natural to replace Ri by BiR̃i with an appropriate matrix R̃i for the
stabilization of the power network model, we discuss the stabilization of (13) as a
more general setting.

In this notation, we consider a set of local controllers that stabilizes the disjointed
system of each Σi by using the input signal ui and the sensor signal yi. The local
controller associated with the ith subsystem is described by

ci :

{
ξ̇i = Kiξi + Li(yi + zi)
ui = Miξi,

i ∈ N (14)

where Ki ∈ R
κi×κi , Li ∈ R

κi×pi , and Mi ∈ R
mi×κi . The term of zi ∈ R

pi expresses
an additional input signal as well. Note that ci can represent controllers including,
e.g., PI controllers.

We define the set of locally stabilizing controllers by

C :=

{
{ci}i∈N :

[
Ai,i BiMi

LiCi Ki

]
is stable for all i ∈ N

}
. (15)

Obviously, if {ci}i∈N ∈ C, then every closed-loop system (Σi, ci) is stable as long as
Ai,j = 0 for all j ∈ N\{i} and

v(t) ≡ 0, z(t) := [zT1 (t), . . . , z
T
N (t)]T ≡ 0. (16)



Will be inserted by the editor 5

Fig. 1. Structure of hierarchical distributed stabilizing controller.

It should be noted that such locally stabilizing controllers can be designed in a com-
putationally reasonable manner because it does not require global information of the
networked system.

Then, the dynamics of the whole networked system can be expressed by

Σ :

{
ẋ = Ax + diag(Bi)u+Rv
y = diag(Ci)x

(17)

where

x :=

⎡
⎢⎣
x1

...
xN

⎤
⎥⎦ , u :=

⎡
⎢⎣
u1

...
uN

⎤
⎥⎦ , y :=

⎡
⎢⎣
y1
...
yN

⎤
⎥⎦ , A :=

⎡
⎢⎣
A1,1 · · · A1,N

...
. . .

...
AN,1 · · · AN,N

⎤
⎥⎦ , R :=

⎡
⎢⎣
R1

...
RN

⎤
⎥⎦ .

In what follows, we use the notation of n :=
∑N

i=1 ni, m :=
∑N

i=1 mi, p :=
∑N

i=1 pi,

and κ :=
∑N

i=1 κi.
To explain the role of v and z, let us first consider the case of (16). Clearly, if

Ai,j �= 0, {ci}i∈N ∈ C does not always guarantee the stability of the closed-loop
system (Σ, {ci}i∈N ). To achieve the closed-loop system stabilization, some additional
compensation by v and z can be considered.

In view of this, to construct appropriate v and z, we consider designing an ν-
dimensional global controller described by

Φ :

⎧⎨
⎩

φ̇ = Eφ+Gx
v = Fφ
z = Hφ

(18)

where E ∈ R
ν×ν , F ∈ R

r×ν , G ∈ R
ν×n, and H ∈ R

p×ν are the design parameters.
In this notation, we address the following robust stabilization problem for the whole
closed-loop system (Σ,Φ, {ci}i∈N ):

Problem 1 Given Σ in (17), consider {ci}i∈N in (14). Then, find Φ in (18) such that
(Σ,Φ, {ci}i∈N ) is stable for all {ci}i∈N ∈ C.

In Problem 1, we formulate a problem to find a global controller such that the
stability of the closed-loop system is robustly guaranteed for all sets of locally stabi-
lizing controllers. Fig. 1 depicts the communication structure among the networked
system Σ, the global controller Φ, and a set of local controllers {ci}i∈N . In this pa-
per, we refer to this structured output feedback controller as a hierarchical distributed
stabilizing controller.
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3 Design of Global Controller

3.1 Versatile Global Controller

To accomplish the hierarchical distributed stabilization, we consider transforming the
realization of Σ into a tractable one based on the following state-space expansion:

Lemma 1 Given Σ in (17), consider

˙̂x =

[
A Γ
0 diag(Ai,i)

]
x̂+

[
R 0
0 diag(Bi)

] [
v
u

]
(19)

where
Γ := A− diag(Ai,i). (20)

If x(0) =
[
In In

]
x̂(0), then

x(t) =
[
In In

]
x̂(t), t ≥ 0

for any v and u.

Proof The state trajectory of (19) is given by

x̂(t) = exp

([
A Γ
0 diag(Ai,i)

]
t

)
x̂(0)

+

∫ t

0

exp

([
A Γ
0 diag(Ai,i)

]
(t− τ)

)[
R 0
0 diag(Bi)

] [
v(τ)
u(τ)

]
dτ.

Noting that

[
In In

] [A Γ
0 diag(Ai,i)

]
= A

[
In In

]
,

[
In In

] [R 0
0 diag(Bi)

]
=

[
R diag(Bi)

]
we have

[
In In

]
x̂(t) = eAt

[
In In

]
x̂(0) +

∫ t

0

eA(t−τ)
[
R diag(Bi)

] [ v(τ)
u(τ)

]
dτ.

This completes the proof. �

Lemma 1 shows that, if the expanded system (19) is stabilized by the inputs v
and u, then the stability of the original system Σ in (17) is guaranteed as well. Note
that the pair ([

A Γ
0 diag(Ai,i)

]
,
[
In In

])
is not observable. Thus, this expanded system can be equivalently reduced to the
original system Σ in (17) in the sense that the original system can be reproduced
from the expanded system by the elimination of the unobservable state-space. Based
on this fact, Problem 1 can be translated to the stabilization problem of (19). Based
on this fact, we have the following result:

Theorem 1 Given Σ in (17), consider {ci}i∈N in (14). Let F ∈ R
r×n such that

A+RF is stable. If

E = diag(Ai,i) +RF, F = F, G = Γ, H = −diag(Ci), (21)

where Γ is defined as in (20), then (Σ,Φ, {ci}i∈N ) is stable for all {ci}i∈N ∈ C.
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Proof Based on Lemma 1, we consider the stabilized system of (19) given by the state
feedback of v = F x̂1 and the output feedback of u = diag(Mi)ξ, namely⎡

⎣ ˙̂x1
˙̂x2

ξ̇

⎤
⎦ =

⎡
⎣A+ RF Γ 0

0 diag(Ai,i) diag(BiMi)
0 diag(LiCi) diag(Ki)

⎤
⎦
⎡
⎣ x̂1

x̂2

ξ

⎤
⎦ .

By the coordinate transformation of φ = x̂1 and x = x̂1 + x̂2, we have⎡
⎣ φ̇
ẋ

ξ̇

⎤
⎦ =

⎡
⎣diag(Ai,i) +RF Γ 0

RF A diag(BiMi)
−diag(LiCi) diag(LiCi) diag(Ki)

⎤
⎦
⎡
⎣φ
x
ξ

⎤
⎦ , (22)

which coincides with (Σ,Φ, {ci}i∈N ) for the parameters in (21). Hence the claim
follows. �

Theorem 1 shows that the global controller given by (21), which can be constructed
independently of designing local stabilizing controllers, achieves the hierarchical dis-
tributed stabilization in Problem 1. Note that the global controller only requires the
output feedback of Γx, which expresses information on the interconnection among
subsystems, i.e., the relative differences of the state among subsystems. This means
that “as long as all subsystems are stabilized individually”, the global controller with
the feedback based on the information on the interconnection among subsystems
guarantees the stability of the whole network system. The number of the intercon-
nection among N subsystems, which is at most N(N − 1)/2, is in fact one of the
design parameters because we can design a cluster set of generators and loads to
derive subsystems in (13). As this number is smaller, then the number of feedback
information is smaller, while the size of each subsystem tends to be larger and the
stability robustness of each subsystem lower. In this way, this controller has such a
trade-off. It should be further remarked that the global controller needs no informa-
tion on local stabilizing controllers, while there always exists some feedback gain F
such that A+RF is stable as long as the pair (A,R) is stabilizable. Since the size of

A is n× n, where n =
∑N

i=1 ni, we can easily find F if n is thousands or less.

3.2 Approximation of Versatile Global Controller

In Problem 1, as a design specification of the global controller, we require that the
stability of the global closed-loop system is guaranteed for all sets of locally stabilizing
controllers. Even though such a global controller is actually versatile, the resultant
controller is necessary to have a dimension comparable with a system to be stabilized.

A knowledge from model reduction techniques indicates that a dimension enough
to approximate the system behavior can be substantially lower than that of systems
of interest [11]. Namely, as long as the approximation of the global controller is fine,
we can expect to achieve robust stabilization that tolerates some variation of local
stabilizing controllers. In view of this, we formulate the following problem:

Problem 2 Given Σ in (17), consider {ci}i∈N in (14). Furthermore, given F ∈ R
r×n

such that A+RF is stable, consider Φ in (18) such that K∗ −K is stable and

‖K∗ −K‖H∞ ≤ ε (23)

for

K∗(s) :=
[

F
−diag(Ci)

]
(sIn − diag(Ai,i)−RF )−1Γ

K(s) :=

[
F
H

]
(sIν −E)−1G

(24)
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where Γ is defined as in (20). Then, find Cε ⊆ C such that (Σ,Φ, {ci}i∈N ) is stable
for all {ci}i∈N ∈ Cε.

In Problem 2, supposing that the approximation error between an ν-dimensional
global controller and the n-dimensional versatile global controller is bounded by ε ≥ 0,
we formulate a problem to determine a class of locally stabilizing controllers such that
the stability of the closed-loop system is guaranteed. Based on a result from controller
reduction theory [10], we can give a solution to this problem as follows:

Theorem 2 Given Σ in (17), consider {ci}i∈N in (14). Furthermore, given F ∈
R

r×n such that A+RF is stable, consider Φ in (18) such that K∗ −K is stable and
(23) holds for K∗ and K defined as in (24). If

Cε :=
{
{ci}i∈N ∈ C :

∥∥(In +GK∗)−1G
∥∥
H∞

< ε−1
}

(25)

where

G(s) :=
[
In 0

](
sIn+κ −

[
A diag(BiMi)

diag(LiCi) diag(Ki)

])−1 [
R 0
0 diag(Li)

]
, (26)

then (Σ,Φ, {ci}i∈N ) is stable for all {ci}i∈N ∈ Cε.
Proof As shown in [10], it follows that (Σ,Φ, {ci}i∈N ) is stable if K∗ − K is stable
and ‖(In +GK∗)−1G(K∗ −K)‖H∞ < 1. In fact, if (23) holds and {ci}i∈N ∈ Cε, then

‖(In +GK∗)−1G(K∗ −K)‖H∞ ≤ ‖(In +GK∗)−1G‖H∞‖K∗ −K‖H∞ < 1.

Hence, this completes the proof. �

Theorem 2 clarifies a class of locally stabilizing controllers that can guarantee
the closed-loop stability with a lower-dimensional global controller satisfying (23).
Note that such a lower-dimensional approximant of K∗ can be systematically con-
structed by applying model reduction methods, such as the balanced truncation and
the Hankel-norm approximation [11]. Furthermore, since Cε → C as ε → 0, we can
regard ε ≥ 0 as a parameter capturing robustness to tolerate the variation of locally
stabilizing controllers. In a practical sense, to guarantee the robust stability for a
sufficiently broad class of locally stabilizing controllers, it is enough to give ε that is
less than ‖K∗‖H∞ by a few order of magnitude.

The self-organized synchronization in a power grid has been intensively investi-
gated based on the numerical simulations from the nonlinear dynamical points of view
in [12,13]. On the other hand, this paper considers the synchronization of a power
grid including a distributed feedback Load Frequency controller. Since the purpose of
the paper is to characterize a distributed feedback structure to enhance the stability
of the power grid, the paper, as the first requirement in the control design, focuses
on the performance analysis based on the linearized system model to theoretically
guarantee at least the local stability. It is one of future works to develop theoretical
nonlinear analysis for the proposed control system.

4 Numerical Results

We design a hierarchical distributed stabilizing controller for a power network model
composed of five subsystems to discuss the effectiveness and limitations of the con-
troller under a certain situation. The numbers of generators and loads belonging to



Will be inserted by the editor 9

each subsystem are shown in Table 1. The dynamics of generators and loads are given
as (3) and (6) with the parameters chosen from

(Mi, Di, Ti) ∈ {(90, 0.4, 3.0), (10, 0.1, 10)} , i ∈ G
(Mi, Di) ∈ {(5, 0.5), (10, 0.1), (30, 1)} , i ∈ L.

Furthermore, using an admittance matrix Y = {Yi,j} in (1) compatible with a com-
plex network model, called the Holme-Kim model [14], we interconnect the subsystems
via their generators. As a result, we obtain a 305-dimensional power network model.

In what follows, we consider simulating the behavior of the power system for
a sudden frequency power variation, which can be caused by a large amount of PV
power generation abruptly injected into the power system. To simulate it by an initial
value response, we give nonzero initial values for the angular velocity of generators,
i.e., δ̇i(0) �= 0 for i ∈ G.

First, we design a set of locally stabilizing controllers {ci}i∈N ∈ C in (14). More
specifically, finding some Fi and Hi such that Ai,i +BiFi and Ai,i +HiCi are stable
by the LQR design technique, we give a set of locally stabilizing controllers as

Ki = Ai,i +BiFi +HiCi, Li = −Hi, Mi = Fi.

To verify the performance of these controllers, giving the initial angular velocity of
all generators as 0.1 [Hz], we calculate the initial value response the nonlinear model
Σnl in (8) without the interconnection among subsystems. The result is shown by
the dashed lines in the upper three figures in Fig. 2 (a)–(c), where we only show,
for simplicity of presentation, the angular velocity trajectories of the generator and
loads belonging to a subsystem. Since the trajectories in Fig. 2 (a), (b) and (c) corre-
spond to a set of low-gain, middle-gain, and high-gain local controllers, respectively,
the convergence rate is improved in the order of (a) to (c). Then, using these local
controllers, we calculate the trajectories of the nonlinear model with subsystem in-
teraction, shown by the solid lines in these figures. We see that the instability of the
closed-loop system is induced by the interference for the case of higher gain local
controllers. As we can see, if each subsystem is stabilized via a high-gain local feed-
back controller, which is designed independently of the other subsystems, the whole
network system often turns out to be unstable. Thus, even if each subsystem is stable,
we need to implement the proposed control structure that robustly guarantees the
stability of the whole system regardless of the stability degree of the subsystems.

Next, using a global controller, we aim to improve the stability of the power
system. To this end, as the port of the additional input v in (17), we give

R = diag(Ri) ∈ R
305×5, Ri := [(gj)

T
j∈Gi

, 0]T ∈ R
3|Gi|+2|Li|

where (gj)j∈Gi denotes a vector composed of gj in (4) compatible with the generators
belonging to the ith subsystem. Then, we find F such that A + RF is stable based
on the LQR design technique. Note that, since the subsystems are interconnected via
their generators, the global controller utilizes the angular information of generators.
In this setting, implementing the versatile global controller in Theorem 1, we calculate
the response of the nonlinear model, shown by the solid lines in the lower figures of

Table 1. Numbers of generators and loads.

i = 1 i = 2 i = 3 i = 4 i = 5
|Gi| 3 6 4 4 4
|Li| 24 25 26 20 26
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Fig. 2. Initial value responses of nonlinear power network model.

Fig. 2 (a)–(c). The result shows that the stability of the closed-loop system is fairly
improved by implementing the versatile global controller.

We provide a result on the global controller approximation in Section 3.2. In
Fig. 4, we plot the approximation error ‖K∗ − K‖H∞ in (23) versus the dimension
ν of approximate global controllers, derived by a model reduction technique called
the balanced truncation [11]. If we choose the dimension of the global controller as
210, the resultant approximation error is 0.0251, which implies that the stability of
the closed-loop system for the linearized model Σ̄ in (12) is guaranteed as long as
‖(In +GK∗)−1G‖H∞ < 39.83 � 1/0.0251 as shown in Theorem 2.

We calculate the initial value responses of the nonlinear model with the 210-
dimensional global controller. The result is shown in the lower figures of Fig. 2 (a)–(c)
by the dashed lines. From these figures, we see that the responses with the approx-
imate global controller are close to those with the 305-dimensional versatile global
controller. In fact, since the values of ‖(In + GK∗)−1G‖H∞ for the low-gain and
middle-gain local controllers are 6.4 and 6.0, respectively, we can theoretically guar-
antee the stability of the closed-loop system for the linearized model with these local
controllers. Furthermore, we see that the deviation of the closed-loop system behav-
ior with the high-gain local controllers is small, even though the norm value is 43. In
this sense, the estimation of the class of locally stabilizing controllers in (25) possibly
becomes conservative.

In addition, we verify the performance of the hierarchical distributed stabiliza-
tion while varying the dimension of power network models. To do this, we show the
responses of power network models having the dimensions of 58 and 148, for which
the number of generators and loads are summarized in Tables 2 and 3, respectively.
The initial value responses with the hierarchical distributed stabilization are shown
in Fig. 4 (a) and (b), where we use global controllers having dimensions of ν = 58
and ν = 148. From these figures, we can confirm that the proposed hierarchical
distributed stabilization works well even if the dimension of power network models
varies. Finally, in Fig. 4 (c), we show a result when we give a larger initial initial value
for the angular velocity of the generators. In this figure, we use the 305-dimensional
power network model and the hierarchical distributed stabilizing controller that are
the same as those in Fig. 2 (c), and give the initial angular velocity of all generators
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as 0.15 [Hz], larger than 0.1 [Hz] for the result in Fig. 2 (c). As we can see, the angular
velocity of generators and loads diverges due to the negative effect of nonlinearity that
is neglected in designing the control system. Thus, to tolerate larger fluctuation, we
need to devise a method explicitly considering the nonlinearity of power generators
and loads. This is an important future work to be addressed.

5 Conclusion

This paper proposed a fundamental framework to develop a novel type of LFC, called
a hierarchical distributed stabilizing controller, for large-scale power systems towards
the high penetration of renewable energy sources such as PV and wind power genera-
tion. Our approach is based on a state-space expansion of the original network system,
which allows us to clarify the intrinsic effect of the interaction among subsystems. In
the hierarchical distributed stabilization, each subsystems is stabilized by an individ-

Table 2. Numbers of generators and loads for n = 58.

i = 1 i = 2 i = 3 i = 4 i = 5
|Gi| 3 2 2 3 2
|Li| 3 2 2 2 2

Table 3. Numbers of generators and loads for n = 148.

i = 1 i = 2 i = 3 i = 4 i = 5
|Gi| 3 3 4 4 6
|Li| 5 7 10 10 12



12 Will be inserted by the editor

ual local controller, and the interference among subsystems is to be compensated by
a global controller.

The proposed approach is basically based on the linearization. Thus one of the next
important issues is to explicitly take into account the nonlinearity of power generators
and loads, which possibly causes the instability of closed-loop systems due to large
fluctuation, for the design of hierarchical distributed stabilizing controllers. To this
end, we need to appropriately investigate the effect of nonlinear interaction among
generators and loads. It is also of importance to develop a method for designing the
optimal feedback gain to enhance the control performance including robust stability
even for system uncertainty induced by large-scalability and to extend our approach
to one based on the prediction of PV and wind power.

—————————–
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