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Abstract— In this paper, we characterize a monotonicity of
the solution of interval quadratic programming that involves
an interval-valued parameter in the objective function and
linear constraints. To give a characterization of monotonicity,
we first analyze the derivative of a solution candidate for
quadratic programming, on the basis of the Karush-Kuhn-
Tucker condition. Then, deriving a condition for the objective
function to assure the monotonicity, we propose a method to
exactly find the upper and lower limits of optimal solutions
by a finite number of operations. Finally, we provide an
illustrative example of power supply scheduling to demonstrate
the efficiency of our solution method.

I. INTRODUCTION

The recent development of computing technology enables
us to efficiently solve optimization problems in a numerical
manner. In this trend, a wide variety of solution algorithms
for linear and nonlinear programming have been investigated.
In particular, for the past several decades, optimization
problems involving interval-valued parameters have been
gathering attention to deal with more realistic issues in which
available data include uncertainty due to observation and
prediction errors. In such optimization problems, interval
analysis techniques are often utilized for, e.g., computing
the enclosures of feasible solution space; see [1], [2] for
an overview of interval analysis theory, and see [3], [4],
[5] for the application of linear and nonlinear programming
involving interval-valued parameters.

In this paper, we consider a quadratic programming
problem that involves an interval-valued parameter, which
we call interval quadratic programming. It is well known
that quadratic programming is one of major optimization
techniques in engineering and operations research, and it
involves various kinds of important applications to engineer-
ing design [6], [7], economics [8] and so forth. Owing to the
potential for wide applications, a number of efficient solution
algorithms, such as interior-point methods [9], [10], have
been developed for the standard quadratic programming.
However, a solution to interval quadratic programming is not
necessarily easy to find. This is because, to investigate the
range of the optimal solution varying with an interval-valued
parameter, we need to solve the quadratic programming for
all possible (i.e., infinite many) parameters in general.
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As one approach to overcome this difficulty, giving a
characterization of the solution of interval quadratic pro-
gramming, we propose a method to calculate the upper
and lower limits of optimal solutions. It is turned out that
the proposed method has the advantage to exactly find the
upper and lower limits by a finite number of operations.
Furthermore, to demonstrate its efficiency, we provide an
illustrative example of power supply scheduling, in which the
uncertainty of demand prediction is modeled as an interval-
valued parameter.

Note that most of studies on interval analysis focuses
mainly on finding the global extremum of a multivariable
function, or on covering a feasible solution set complying
with equality and inequality constraints. To this end, a
constraint propagation technique [1], [2] is mostly applied.
In fact, the straightforward application of interval arithmetics
gives a solution to interval quadratic programming. However,
it requires considerable computation cost to directly handle
interval-valued parameters. Moreover, the resultant solution
often becomes conservative due to an overestimation. To
the best of authors’ knowledge, there is no general method
based on the interval analysis for solving interval quadratic
programming in a computationally reasonable manner.

The reminder of this paper is structured as follows: In
Section II, we first formulate an interval quadratic program-
ming problem to find the lower and upper limits of optimal
solutions. In Section III, we carry out a monotonicity analysis
of the interval quadratic programming problem based on a
representation of the solution candidate derived from the
Karush-Kuhn-Tucker condition. By this analysis, we derive
a characterization to guarantee the monotonicity of the
optimal solution with respect to an interval-valued parameter.
Then, in Section IV, we provide an illustrative example of
power supply scheduling to demonstrate the efficiency of the
proposed solution method. Finally, concluding remarks are
provided in Section V.

Notation. The following notation is used in this paper:
R set of real numbers
R≥0 set of nonnegative real numbers
R>0 set of positive real numbers
In n-dimensional unit matrix
eni ith column of In
1n n-dimensional all-ones vector
|I| cardinality of a set I
P(I) power set of a set I
im(M) image of a matrix M
ker(M) kernel of a matrix M
rank(M) rank of a matrix M



For a natural number n, let N[n] := {1, . . . , n}, and we
denote the block-diagonal matrix having M1, . . . ,Mn on its
block-diagonal by diag(Mi)i∈N[n]. Furthermore, we denote
a matrix composed of column vectors of In corresponding
to the indices I ⊆ N[n] by enI ∈ Rn×|I|. In particular, if not
confusing, we omit the superscript of n.

We define the sets of matrices

Zn := {A ∈ Rn×n : ai,j ≤ 0, ∀i, j ∈ N[n], i ̸= j}
Z+

n := {A ∈ Zn : ai,i ≥ 0, ∀i ∈ N[n]}

where ai,j denotes the (i, j)-element of A. Furthermore, we
define

Mn :={A ∈ Zn : A
−1 ∈ Rn×n

≥0 }
M†

n :={A ∈ Zn : e
T
IAeI ∈M|I|, ∀I ∈P(N[n])\{∅,N[n]}}

and

Rn := {A ∈ Rn×n
≥0 : (eTIAeI)

−1 ∈ Z+
n , ∀I ∈ P(N[n])\∅}.

II. PROBLEM FORMULATION

In this paper, we deal with a quadratic programming
problem given by

x∗ = arg min
x∈Rn

J(x) s.t.

{
Ainx ≤ bin
Aeqx = beq

(1)

where

Ain ∈ Rm×n, Aeq ∈ Rr×n, bin ∈ Rm, beq ∈ Rr

and
J(x) :=

1

2
xTQx− pTx (2)

with a positive definite matrix Q = QT ∈ Rn×n and a vector
p ∈ Rn. Suppose that the constraints and objective function
in (1) and (2) depend on an interval-valued parameter d ∈
[d, d] ⊆ Rν . In this situation, the optimal solution x∗

should be a function of the parameter d. For such quadratic
programming, which called interval quadratic programming
[11], [12], we formulate a problem to find the upper and
lower limits of x∗ as follows:

Problem 1: Given [d, d] ⊆ Rν , define

X ∗ := {x∗(d) : d ∈ [d, d]} (3)

for an interval quadratic programming problem in (1). Then,
find

x∗ = {x∗
i } ∈ Rn, x∗ = {x∗

i } ∈ Rn (4)

where x∗
i and x∗

i denote the maximum and minimum ith
elements among all x∗ ∈ X ∗.

In general, the solution of Problem 1 is not necessarily
easy to obtain. This is because, to examine the upper and
lower limits of x∗, we need to solve the interval quadratic
programming for all possible parameters, i.e., infinite many
parameters. In other words, solutions for a finite number of
d ∈ [d, d] do not give the exact bounds of x∗.

From a theoretical point of view, straightforward applica-
tion of interval arithmetics can be used for computing the
bounds of x∗. However, in practice, the resultant solution is
often conservative since the interval arithmetics forces us an

overestimation. Moreover, it generally requires considerable
computation cost.

In view of this, as a key notion to efficiently solve
Problem 1, we introduce the monotonicity of x∗ as follows:

Definition 1: Let [d, d] ⊆ Rν be given. A function f :
Rν 7→ Rn is said to be monotone with respect to d if, for any
i ∈ N[ν] and j ∈ N[ν], there exists a constant σi,j ∈ {−1, 1}
such that

σi,j
∂fj(d)

∂di
≥ 0, ∀d ∈ [d, d] ⊆ Rν (5)

where fi and di denote the ith elements of f and d,
respectively. Furthermore, an interval quadratic programming
problem in (1) is said to be monotone with respect to d if
x∗ is monotone with respect to d.

If an interval quadratic programming problem in (1) is
monotone with respect to d, then the solution of Problem 1
is obtained by

x∗
i = x∗

i (d
(i)
), x∗

i = x∗
i (d

(i)) (6)

where the jth elements of d
(i) ∈ Rn and d(i) ∈ Rn are

defined as {
d
(i)

j := σi,j max
{
σi,jdj , σi,jdj

}
d
(i)
j := σi,j min

{
σi,jdj , σi,jdj

}
.

(7)

Note, however, that a mathematical characterization of the
monotonicity is not trivial in general.

III. MONOTONICITY CHARACTERIZATION OF INTERVAL
QUADRATIC PROGRAMMING

A. Interval Quadratic Programming without Equality Con-
straint

First of all, we consider the case where the inequality
constraint in (1) is solely imposed on the interval quadratic
programming. A generalization to handle the equality con-
straint will be provided in Section III-B.

For the quadratic programming in (1), the Karush-Kuhn-
Tucker condition assures that there exists a nonnegative λ ∈
Rm

≥0 such that  Qx∗ − p+AT
inλ = 0

λT(Ainx
∗ − bin) = 0

Ainx
∗ − bin ≤ 0.

(8)

The following proposition gives a representation of x∗ based
on the Karush-Kuhn-Tucker condition:

Proposition 1: Consider an interval quadratic program-
ming problem in (1). Let I ∈ P(N[m]) such that

rank(AI) = |I| (9)

where AI := eTIAin ∈ R|I|×n, and define

xc(I) :=
[
In 0

] [ Q AT
I

AI 0

]−1 [
p
bI

]
(10)

where bI := eTIbin ∈ R|I|. Then, it follows that

xc(I∗) = x∗, I∗ := {i ∈ N[m] : λi > 0} (11)



where λi denotes the ith element of λ ∈ Rm
≥0 in (8).

Proof: Using the property of partitioned matrix inverse,
we rewrite (10) by

xc(I) = PIbI +GIp (12)

where

PI := Q−1AT
I(AIQ

−1AT
I)

−1 ∈ Rn×|I|,

GI := Q−1 − PIAIQ
−1 ∈ Rn×n.

(13)

Note that
eIe

T
Iλ = λ, AIx

∗ = bI

if I = I∗. Thus

x∗ = Q−1p−Q−1AT
Iξ (14)

for ξ := eTIλ. Multiplying it by AI from the left side, we
have

bI = AIQ
−1p−AIQ

−1AT
Iξ,

where AIQ
−1AT

I is nonsingular owing to (9). By solving
this equation with respect to ξ and substituting it into (14),
we obtain

x∗ = PIbI +GIp,

which implies that xc(I∗) = x∗ for (12). Hence, the claim
follows.

Proposition 1 gives a representation of the solution can-
didate xc that is parametrized by the index set I. It should
be noted that the monotonicity of x∗ is guaranteed if xc

is monotone for any I ∈ P(N[m]) satisfying (9). In what
follows, for simplicity of arguments, we assume that the
inequality constraint is given by

Ain =

[
In
−In

]
, bin =

[
b+

−b−

]
(15)

and the dependence on the parameter d ∈ [d, d] ⊆ Rν is
represented as

∂b+(d)

∂d
=

∂b−(d)

∂d
= δ1e

n
N[ν],

∂p(d)

∂d
= δ2e

n
N[ν] (16)

for δ1 ≥ 0 and δ2 ≥ 0. In this setting, we derive a tractable
representation of the derivative of xc as follows:

Lemma 1: Consider an interval quadratic programming
problem in (1) with (15), and suppose that (16) holds.
Furthermore, suppose that no equality condition is imposed
on (1). Let I ∈ P(N[2n]) such that (9), and define

K := K+ ∪ K− ∈ P(N[n]) (17)

where {
K+ := {i ∈ N[n] : i ∈ I}
K− := {i ∈ N[n] : (i+ n) ∈ I}.

Then, xc in (10) satisfies

∂xc

∂d
=

{
δ1Π(K;Q−1) + δ2Γ(K;Q−1)

}
enN[ν] (18)

where

Π(K;A) := AeK(e
T
KAeK)

−1eTK ∈ Rn×n

Γ(K;A) := A−Π(K;A)A ∈ Rn×n.
(19)

Proof: Owing to I ∈ P(N[2n]) satisfying (9), we
verify that

K+ ∩ K− = ∅,

which implies that

eI =

[
eK+ 0
0 eK−

]
∈ R2n×(|K+|+|K−|)

for (17). By defining

J1 :=

[
In 0
0 −In

]
, J̃1 :=

[
I|K+| 0
0 −I|K−|

]
,

we have eTIJ1 = J̃1e
T
I . Furthermore, we have

eTIJ2 = [eK+ , eK− ]
T
= eTK, J2 :=

[
In
In

]
.

Thus, it follows that

AI = eTIAin = eTI J̃1J2 = J̃1e
T
K. (20)

In addition, owing to (16), we have

∂bI
∂d

= eTI
∂bin
∂d

= δ1e
T
I J̃1J2e

n
N[ν] = δ1J̃1e

T
Ke

n
N[ν].

Thus, by (12), we obtain

∂xc

∂d
=

(
δ1PI J̃1e

T
K + δ2GI

)
enN[ν].

Finally, substituting (20) into PI and GI yields

PI J̃1e
T
K = Π(K;Q−1), GI = Γ(K;Q−1).

Hence, the claim follows.
Lemma 1 shows that the derivative of xc defined as in

(10) can be represented as a function of Π and Γ in (19).
The sign pattern of the matrix functions Π and Γ can be
analyzed as follows:

Lemma 2: Let A ∈ Rn×n be nonsingular. Then, for any
K ∈ P(N[n]), Π and Γ in (19) satisfy

Π(K;A) ∈ Z+
n , A ∈ Mn

and
Γ(K;A) ∈

{
Z+

n , A−1 ∈ Rn

Rn×n
≥0 , A−1 ∈ Mn.

Proof: First, from the structure of Π, it follows that

eTKΠeK = I|K|, eTKΠeK = 0, eTKΠeK = 0 (21)

where K := N[n]\K. Note that, if A ∈ Mn, it follows that

−eTKAeK ∈ R|K|×|K|
≥0 , (eTKAeK)

−1 ∈ R|K|×|K|
≥0 .

Thus
eTKΠ(K;A)eK = eTKAeK(e

T
KAeK)

−1

is constructed by the product of nonpositive and nonnegative
matrices. This implies that all elements of the submatrix
eTKΠeK are nonpositive. Hence, in conjunction with (21),
Π ∈ Z+

n is proven for any K ∈ P(N[n]).
On the other hand, applying Lemma 6 in Appendix to Π,

we have
Γ(K;A) = eK(e

T
KA

−1eK)
−1eTK.



Thus, the submatrices of Γ satisfy

eTKΓeK = 0, eTKΓeK = 0, eTKΓeK = 0.

By noting that

eTKΓ(K;A)eK ∈

 Z+

|K|, A−1 ∈ Rn

R|K|×|K|
≥0 , A−1 ∈ Mn,

we verify the claim.
Lemma 2 shows that the sign pattern of Π and Γ is

invariant with respect to any K ∈ P(N[n]) if the argument A
of Π and Γ belongs to a particular class of matrices. Based
on this fact, we can prove the following theorem:

Theorem 1: Consider an interval quadratic programming
problem in (1) with (15), and suppose that (16) holds.
Furthermore, suppose that no equality condition is imposed.
If  (Q ∈ Rn) ∨ (Q ∈ Mn), δ1 = 0

Q−1 ∈ Mn, δ2 = 0
(Q ∈ Rn) ∧ (Q−1 ∈ Mn), δ1, δ2 ̸= 0,

(22)

then the quadratic programming problem is monotone with
respect to d.

Proof: If (22), it follows from Lemma 2 that
(Γ ∈ Z+

n ) ∨ (Γ ∈ Rn×n
≥0 ), δ1 = 0

Π ∈ Z+
n , δ2 = 0

(Π ∈ Z+
n ) ∧ (Γ ∈ Z+

n ), δ1, δ2 ̸= 0.

Hence, the claim follows.
Theorem 1 shows that the interval quadratic programming

in (1) possesses the monotonicity if the matrix Q, which
corresponds to the quadratic part of the objective function
in (2), belongs to the class of matrices specified by (22). As
one of meaningful matrices satisfying (22), we introduce the
following class of matrices:

Lemma 3: Given α ∈ (−∞, 1] and w ∈ Rn
>0, define

Hn(α,w) := In − α
wwT

wTw
∈ Rn×n. (23)

Then, it follows that

Hn(α,w) ∈

 Rn, α ∈ (−∞, 0]
Mn, α ∈ [0, 1)
M†

n, α = 1
(24)

and
H−1

n (α,w) ∈
{

Mn, α ∈ (−∞, 0]
Rn, α ∈ [0, 1).

(25)

Proof: From direct calculation, we can verify that

H−1
n (α,w) = Hn

(
α

α− 1
, w

)
. (26)

First, if α ∈ [0, 1), Hn ∈ Mn follows from Hn ∈ Zn

and H−1
n ∈ Rn×n

≥0 . Similarly, if α ∈ (−∞, 0], H−1
n ∈ Mn

follows from (26).
Next, if α = 1, the principal submatrix of the singular

Hn ∈ Zn can be represented by

eTKHn(1, w)eK, K ∈ P(N[n])\{∅,N[n]}.

Then, we have

eTKHn(1, w)eK = H|K|

(
wT

KwK

wTw
,wK

)
, wK := eTKw.

Note that

0 <
wT

KwK

wTw
< 1, ∀K ∈ P(N[n])\{∅,N[n]}

since all entries of w are nonzero. Thus, for any principal
submatrix of Hn, e

T
KHneK ∈ M|K| holds. Hence, Hn ∈ M†

n

follows.
Finally, if α ∈ (−∞, 0], the inverse of the principal

submatrices of Hn ∈ Rn×n
≥0 satisfies

(eTKHn(α,w)eK)
−1 = H−1

|K| (α̃, wK) ∈ M|K| ⊂ Z|K|

where

α̃ := α
wT

KwK

wTw
∈ (−∞, 0].

This implies that Hn ∈ Rn holds for any K. Similarly, if
α ∈ [0, 1), H−1

n ∈ Rn is proven by (26).
Based on Lemma 3, the following result is straightfor-

wardly obtained:
Corollary 1: Consider an interval quadratic programming

problem in (1) with (15), and suppose that (16) holds.
Furthermore, suppose that no equality condition is imposed.
For a natural number l, let

Q = diag (Hni(αi, wi))i∈N[l] ,

{
αi ∈ (−∞, 1)
wi ∈ Rni

>0
(27)

where
∑l

i=1 ni = n and Hni is defined as in (23). If{
αi ∈ (−∞, 1), ∀i ∈ N[l], δ1 = 0
αi ∈ (−∞, 0], ∀i ∈ N[l], δ1 ̸= 0,

(28)

then the quadratic programming problem is monotone with
respect to d.

Proof: If (28) holds, then (22) follows from Lemma 3.
Hence, the claim follows.

From Corollary 1 with Lemma 3, we can see that, if αi ∈
(−∞, 0] for all i ∈ N[l], both Π and Γ belong to the class
of Z+

n . This implies that x∗
i is a monotonically increasing

function of di and a monotonically decreasing function of
dj for j ̸= i.

B. Interval Quadratic Programming with Equality Con-
straint

In this subsection, based on an orthogonal projection of the
solution space, we convert a quadratic programing problem
with an equality constraint to that without the equality
constraint. We show that the monotonicity of an interval
quadratic programing problem with equality constraints can
be analyzed by the procedure same as in Section III-A.

Let η ∈ Rn be a vector such that Aeqη = beq for (1).
Then, by replacing x − η by x as a new variable, we can
rewrite the equality constraint as

Aeqx = 0. (29)



It should be noted that this change of variables does not
affect the monotonicity of solutions as long as η is constant.
Therefore, we can assume (29) without loss of generality.
Based on this fact, we obtain the following lemma:

Lemma 4: Consider an interval quadratic programming
problem in (1), and suppose that beq = 0. Define V ∈ Rn×n̂

such that

im(V ) = ker(Aeq), V TV = In̂ (30)

where n̂ := n− r. Then, x∗ is given by

x∗ = V x̂∗, x̂∗ := argmin
x̂∈Rn̂

Ĵ(x̂) s.t. AinV x̂ ≤ bin

(31)
where

Ĵ(x̂) :=
1

2
x̂TQ̂x̂− p̂Tx̂,

{
Q̂ := V TQV
p̂ := V Tp.

Proof: We notice that V V T is the orthogonal projection
matrix onto ker(Aeq) by the definition of (30). Thus

A := V V T = In −AT
eq(AeqA

T
eq)

−1Aeq (32)

holds. Furthermore, x ∈ ker(Aeq) for x̂ = V Tx, or
equivalently, (29) holds if and only if

x = Ax = V x̂.

Hence, the claim follows from rewriting (1) by using x̂ as
the variable of the quadratic programing in (31).

As shown in Lemma 4, we can equivalently rewrite a
quadratic programming problem with an equality constraint
by that without the equality constraint. Based on this fact,
similarly to (18), we obtain the following representation of
the derivative of xc in (10):

Lemma 5: Consider an interval quadratic programming
problem in (1) with (15), and suppose that (16) holds. Let
I ∈ P(N[2n]) such that (9), and define K as in (17). Then,
xc in (10) satisfies

∂xc

∂d
= {δ1Π(K;QV ) + δ2Γ(K;QV )} enN[ν] (33)

where Π and Γ are defined as in (19) and

QV := V (V TQV )−1V T ∈ Rn×n (34)

with V satisfying (30).

Proof: To show the claim by a manner similar to the
proof of Lemma 1, we replace the symbols in Lemma 1 as

xc → x̂c, Ain → AinV, Q → Q̂, p → p̂.

Then, from (12), we have

∂x̂c

∂d
=

(
δ1P̂I J̃1e

T
K + δ2ĜIV

T
)
enN[ν]

where P̂I and ĜI are defined by replacing the symbols in
(13) as

Q → Q̂ = V TQV, AI → ÂI = J̃1e
T
KV.

Noting that V x̂c = xc, we obtain

V P̂I J̃1e
T
K = Π(K;QV ), V ĜIV

T = Γ(K;QV ).

Hence, the claim follows.
As shown in Lemma 5, the derivative of xc can be

represented by the functions of Π and Γ, similarly to the
case where the inequality constraint is not imposed on the
quadratic programming. It should be noted that Q−1 in (18)
is replaced with QV in (33), which is defined through the
orthogonal projection. Based on this fact, we can prove the
following theorem:

Theorem 2: Consider an interval quadratic programming
problem in (1) with (15), and suppose that (16) holds. Let
I ∈ P(N[2n]) such that (9), and define K as in (17). If
Q = In and

Aeq = diag(wT
i )i∈N[r] ∈ Rr×n

≥0 , wi ∈ Rni
>0 (35)

where
∑r

i=1 ni = n, then the quadratic programming prob-
lem is monotone with respect to d.

Proof: Note that if Q = In, then QV = A for A
defined as in (32). Furthermore, by the definition of A and
Lemma 3, we verify that

A = diag (Hni(1, wi))i∈N[r] ∈ M†
n (36)

for Aeq in (35). Thus, in a manner similar to the proof of
Lemma 2, we can prove that, for any K in (17) constructed
by I ∈ P(N[2n]) satisfying (9), Π(K;A) ∈ Z+

n holds.
On the other hand, substituting (32) into Γ yields

Γ(K;A) = eKdiag
(
Hni(1, e

T
Ki
wi)

)
i∈N[r]

eTK ∈ Z+
n

where
K := N[n]\K, eK = [eK1

, . . . , eKr
].

Hence, the claim follows.
By comparing Theorem 2 with Corollary 1, we can

see that, from the viewpoint of monotonicity, the interval
quadratic programming with Q = In subject to the equality
constraint in (36) is equivalent to that with Q given as in (27)
for αi ∈ (−∞, 0] subject to no equality constraint. It should
be noted that, if we get rid of the assumption of Q = In, QV

in (34) does not coincide with A in (36), and thus it is
difficult to systematically characterize the monotonicity of
the interval quadratic programming.

IV. APPLICATION TO POWER SUPPLY SCHEDULING

A. Monotonicity Analysis

In this subsection, we formulate a power supply scheduling
problem as an interval quadratic programming problem. In
this problem, taking into account the uncertainty of demand
prediction, we aim to minimize an objective function reflect-
ing the fuel cost of generators and the degradation cost of
storage batteries.

Dividing a day into n moments, we denote the temporal
sequence of uncertain predicted demand by d ∈ Rn. We
suppose that d varies within a fixed interval [d, d] ⊆ Rn,



which can be regarded as a confidence interval of demand
prediction [13], [14]. For this demand prediction, we consider
keeping a supply-demand balance by the power of generators
and the charge and discharge power of storage batteries. We
denote the temporal sequence of the total generator power by
x ∈ Rn, and the total charge and discharge power of storage
batteries by ∆y ∈ Rn. In this notation, the supply-demand
balance can be represented by

∆y = x− d. (37)

We impose the inequality constraint described as

∆ymin1n ≤ ∆y ≤ ∆ymax1n (38)

where ∆ymin ∈ R and ∆ymax ∈ R are the constants
representing the bounds of ∆y. Furthermore, we denote the
total energy of the batteries by

y := [y1, . . . , yn]
T ∈ Rn (39)

where the ith element is defined by

yi := y0 +
i∑

j=1

∆yj

with the initial value of y0 ∈ R. The equality constraint is
imposed on (39) as

yn = y0 + yD (40)

where yn ∈ R denotes the total energy at the termination
time, and yD ∈ R denotes a desired energy to be charged in
the day of interest. Moreover, taking into account the fuel
cost of generators and the degradation cost of batteries, we
define the objective function by

f(x,∆y) := α1x
Tx+α21

T
nx+α3∆yT∆y+α41

T
n∆y (41)

where α1, . . . α4 ∈ R are nonnegative coefficients.
By substituting (37), the optimal power generation plan

that minimizes the objective function in (41) is given by

x∗(d) = argmin
x∈Rn

f(x, x− d) (42)

where the inequality constraint in (38) can be rewritten as

Cin(x; d) :

[
In
−In

]
x ≤

[
∆ymin1n + d

−(∆ymax1n + d)

]
(43)

and the equality constraint in (40) as

Ceq(x; d) : 1
T
nx = 1T

nd+ yD. (44)

In addition, as being compatible with (37), the optimal
battery charge cycles is given by

∆y∗(d) := x∗(d)− d. (45)

For this interval quadratic programming, we can prove the
following fact:

Corollary 2: Let d ∈ [d, d] be given, and consider the
interval quadratic programming in (42) subject to

Cin(x; d), Ceq(x; d0) (46)

where Cin and Ceq are defined as in (43) and (44), respec-
tively, and

d0 :=
d+ d

2
∈ Rn. (47)

Define ∆y∗ as in (45). Then, both x∗ and ∆y∗ are monotone
with respect to d.

Proof: Note that the objective function in (42) without
the constant term can be rewritten by J in (2) with

Q = 2(α1 + α3)In, p = 2α3d− α21n.

Thus, by using Theorem 2, the monotonicity of x∗ is proven.
Next, we prove the monotonicity of ∆y∗. To this end, it
suffices to show that

∆yc(I; d) := xc(I; d)− d

is monotone for any I ∈ P(N[2n]) such that (9), where xc

is defined as in (10). By direct calculation, we obtain
∂∆yc

∂d
= − (1− δ) eKe

T
K − 1

|K|
eK1|K|1

T
n(eKe

T
K + δeKe

T
K)

where K is defined as in (17), K := N[n]\K and

δ :=
α3α1

α2 + α3α1
.

Since δ ∈ [0, 1], all elements of ∂∆yc/∂d are nonpositive
for any K ∈ P(N[n]). Hence, the claim follows.

Corollary 2 shows that the interval quadratic programming
problem in (42) is monotone as long as the equality con-
straint does not depend on the parameter d. Moreover, in
this power supply scheduling problem, not only the optimal
power generation plan x∗ but also the optimal battery charge
cycles ∆y∗ possess the monotonicity with respect to d.

B. Numerical Example
In this subsection, through a numerical example, we show

the efficiency of our method to find the lower and upper lim-
its of optimal solutions. As a confidence interval of demand
prediction, we use the temporal sequence of intervals shown
in Fig. 1, which is based on the data provided by Tokyo
Electric Power Company managing 19 million demanders.
In this figure, the solid line with circles represents d0 in
(47), and the thick solid lines represent d and d.

We fix the bounds of ∆y in (38) as ∆ymax = 6×106 kW
and ∆ymin = −6×106 kW, the initial and termination values
of total energy as y0 = yD = 0, and the coefficients of the
fuel cost function in (41) as α1 = 0.38×10−12 JPY/W2h and
α2 = 5000×10−6 JPY/Wh. In this setting, varying the coef-
ficients of the degradation cost of storage batteries as shown
in Table I, we solve the interval quadratic programming
problem in (42). The result is shown in Fig. 2, whose first to
third figure corresponds to Case 1 to Case 3, respectively.
In these figures, the lines with circles denote the optimal
solutions for d0 in (47), and the thick solid lines denote the
values of the upper and lower limits. From these figures, we
see that the difference between the upper and lower limits of
power generation plan, which corresponds to the regulating
capacity of generators, increases as we use more expensive,
i.e., higher degradation cost, storage batteries.
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Fig. 1. Model of Uncertain Demand Prediction.

V. CONCLUSION

In this paper, we have characterized a monotonicity of the
solution of interval quadratic programming that involves an
interval-valued parameter in the objective function and linear
constraints. Based on the monotonicity characterization, we
have proposed a method to find the lower and upper limits
of the solutions for the interval quadratic programming by
a finite number of operations. Moreover, we have provided
an illustrative example of power supply scheduling and we
have shown that the optimal solution of power generation as
well as battery charge cycles possess the monotonicity. An
enhancement to handle more general form of inequality and
equality constraints is currently under investigation.

APPENDIX

Lemma 6: Let A ∈ Rn×n be a nonsingular matrix, and
P ∈ Rn×k and P ∈ Rn×(n−k) such that

PPT + P P
T
= In.

Suppose that PTAP and P
T
A−1P are nonsingular. Then

AP (PTAP )−1PT = In − P (P
T
A−1P )−1P

T
A−1

holds.

Proof: Using Ξ := P (P
T
A−1P )−1P

T
, we define

Y := In − ΞA−1 = In − P (P
T
A−1P )−1P

T
A−1.

Furthermore, by defining X := In −A−1Ξ, it follows from
(A−1Ξ)2 = A−1Ξ that

XA−1Ξ = 0.

TABLE I
COEFFICIENTS OF DEGRADATION COST FUNCTION OF STORAGE

BATTERIES.

Case 1 Case 2 Case 3
α3 JPY/W2h 1.80× 10−14 1.80× 10−13 1.80× 10−12

α4 JPY/Wh −2.17× 10−7 −2.17× 10−6 −2.17× 10−5
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Fig. 2. Power Generation Plan and Battery Charge Cycles.

Thus, we have

Â := PTA−1P − PTA−1ΞA−1P
= PTXA−1P + PTXA−1ΞA−1P
= PTXA−1Y P,

where the last equality comes from X2 = X and

XA−1Y = X2A−1 = XA−1.

In addition, from the facts that

PPTX = (In − P P
T
)X = X

and
Y PPT = Y (In − P P

T
) = Y,

we obtain
PÂPT = XA−1Y = A−1Y



by XA−1 = A−1Y and Y 2 = Y . Note that Â = (PTAP )−1

holds as shown in [15], and thus it follows that

Y = AP (PTAP )−1PT.

Hence the claim follows.
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