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Abstract— In this paper, we propose a design method of
multiresolved control for discrete-time linear systems. In the
proposed control system, we implement a transitory compen-
sator specialized in controlling a short-term system behavior
into a standard controller that is designed for controlling a
long-term behavior. To establish such control architecture, we
construct a low-rank model having the same reachable and
observable subspaces as those of the original system in the
range of its rank. Then, we derive a redundant state-space
realization associated with the low-rank model. A cascaded
structure of the redundant realization enables to systematically
design a transitory compensator that stabilizes the short-term
system behavior while cooperating with a standard controller.
The efficiency of the multiresolved control is shown through an
illustrative example of frequency control in power networks.

I. INTRODUCTION

In the real world, there can be found a number of systems
whose behavior is captured as an interaction among subsys-
tems having different spatiotemporal scales. For example,
biological systems [1] are composed of molecules, proteins,
cells, and organs that hierarchically interact on multiple
spatiotemporal scales. To deal with such nonuniformly dis-
tributed systems in the spatiotemporal point of view, it is
crucial to figure out and take advantage of essential system
properties depending on objectives to be accomplished.

Towards the development of a systematic framework for
spatiotemporally multiresolved control [2], this paper pro-
poses a design method of multiple time scale control, in
which we explicitly consider the short-term to long-term
behavior of systems to be stabilized. To this end, we first
construct a low-rank model that can properly capture a short-
term system behavior, which can be represented by low-
dimensional reachable and observable subspaces. Next, we
derive a redundant state-space realization associated with the
low-rank model, and then we develop a design method of
multiresolved control. By virtue of a cascaded structure of
the redundant realization, we can systematically design a
transitory compensator that stabilizes the states in possible
contingencies, cooperating with a standard controller for
normal circumstances.

As the demonstration for the effectiveness of this multire-
solved control, we perform a numerical simulation on the
stabilization of frequency variations in a power network. In
this simulation, we show that a low-dimensional transitory
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compensator, attached to the average feedback controller, has
good ability to stabilize contingency frequency variations
arising in a local area.

To clarify our contribution, we give some references as fol-
lows. In [3], a hierarchical control architecture is considered
where a low-dimensional approximant is used to construct an
additional input signal such that the error between the outputs
of the approximant and its original system converges to zero
asymptotically. However, the hierarchical control system is
practically difficult to implement because it is based on the
premise of the possibilities of an exact model reduction, i.e.,
the low-dimensional approximant can exactly reconstruct the
original system behavior, and of the state feedback of the
original system.

From the viewpoint of time scale separation, the proposed
multiresolved control has a similarity to a control synthe-
sis method based on singular perturbation theory [4]. In
this approach, an asymptotic expansion is generally used
to analyze the degradation of control performance due to
singular perturbation approximation. By contrast, our ap-
proach has an advantage that, on the basis of the redundant
realization having a tractable cascaded structure, we can
analytically manage an approximation error of the low-
dimensional model, which corresponds to a long-term system
behavior. This redundant realization is different from those
used in [5], [6] in the sense that we use state-space expansion
to derive a multiresolved state-space representation in a
temporal viewpoint, whereas the existing works use it to
approximately decouple interconnected systems in a spatial
viewpoint.

This paper is organized as follows. In Section II, we derive
a low-rank model that can capture the short-term behavior
of systems on the basis of matrix decomposition, called
Wedderburn rank reduction [7]. Then, in Section III, we
propose a synthesis method of multiresolved control based
on the redundant realization associated with the low-rank
model. Section IV shows an illustrative example for the
stabilization of frequency variations in a power network.
Finally, concluding remarks are provided in Section V.

Notation: We denote the set of real numbers by R, the n-
dimensional identity matrix by In, the ith column of In by
eni , the rank of a matrix M by rank(M), the image of a
matrix M by imM , and the kernel of a matrix M by kerM .
A matrix A ∈ Rn×n is said to be Schur if

lim
t→∞

xt = 0, ∀x0 ∈ Rn (1)

for the associated recurrence formula xt+1 = Axt. Further-



more, a switching matrix At ∈ {A(1), A(2)} with a fixed
switching mode sequence is said to be transitionally Schur
if (1) holds for xt+1 = Atxt.

II. SYSTEM REDUCTION BASED ON WEDDERBURN
RANK REDUCTION

A. Wedderburn Rank Reduction

Let A ∈ Rn×n be given and denote ν := rank(A). For
some sequences of vectors ri, oi ∈ Rn, we consider the
following biconjugation process associated with A:

ui := ri −
i−1∑
j=1

rTi Avj
uTj Avj

uj , vi := oi −
i−1∑
j=1

uTj Aoi

uTj Avj
vj , (2)

where u1 := r1 and v1 := o1. It has been shown in [7] that
vTi Auj = 0 for all i ̸= j, or equivalently, for

Ωk := diag(ω1, . . . , ωk), ωi := vTi Aui, (3)

it follows that

V T
k AUk = Ωk, k ∈ {1, . . . , ν} (4)

where Uk := [u1, . . . , uk] and Vk := [v1, . . . , vk]. The
biconjugation process in (2) can be regarded as a function
that produces a biorthogonal pair satisfying (4). This process
is to be denoted by

(Uk, Vk) = WA(Rk, Ok) (5)

where Rk := [r1, . . . , rk] and Ok := [o1, . . . , ok]. Note that
they satisfy

imUk = imRk, im Vk = imOk (6)

for all k ∈ {1, . . . , ν}.
In this notation, it is also shown that A is decomposed

into the sum of rank-one matrices as

A =
ν∑

i=1

ω−1
i ϕiψ

T
i ,

{
ϕi := Aui
ψi := ATvi

(7)

for any Rν and Oν , as long as uTi Avi ̸= 0 for all i ∈
{1, . . . , ν}. On the basis of this rank-one decomposition, we
can define a matrix having rank k as

Ak :=

k∑
i=1

ω−1
i ϕiψ

T
i , k ∈ {1, . . . , ν}, (8)

which is called a Wedderburn matrix [7]. This low-rank
reduction can be represented in a matrix form as

Ak = ΦkΩ
−1
k ΨT

k , Φk := AUk, Ψk := ATVk.

Then, the following lemma gives a link between the Wed-
derburn rank reduction and linear systems theory:

Lemma 1: Let A ∈ Rn×n, B ∈ Rn, and C ∈ R1×n.
Consider the biconjugation process in (5) with

Rk = [B,AB, . . . , Ak−1B]
Ok = [CT, (CA)T, . . . , (CAk−1)T]

(9)

and assume that Ωk in (3) is nonsingular. Then, for Ak in
(8), it follows that

Ai
kB = AiB, CAi

k = CAi (10)

for all i ∈ {1, . . . , k}.

Let (A,B,C) denote the system matrices of{
xt+1 = Axt +But
yt = Cxt.

(11)

Lemma 1 shows that, by giving the original bases Rk and
Ok as in (9), the biconjugation process in (5) produces a
system matrix Ak such that the low-rank model (Ak, B, C)
has the same (k + 1)-dimensional reachable and observable
subspaces as those of (A,B,C).

B. Relation to the Krylov Projection

Let us consider the following biconjugation process in (5)
associated with In:

(Pk, Qk) = WIn(Rk, Ok) (12)

where Rk and Ok are defined as in (9). From the relations
in (4) and (6), we see that

imPk = imRk, imQk = imOk, QT
kPk = Λk

where Λk is a diagonal matrix. In model reduction theory, the
biorthogonal projection of linear systems onto their reachable
and observable subspaces is called the Krylov projection.
This model reduction technique can produce an approximate
model that preserves the first 2k Markov parameters of the
original system [8], similarly to (10). The Krylov projection
model of (A,B,C) is given as (P †

kAPk, P
†
kB,CPk) where

P †
k := Λ−1

k QT
k , (13)

which satisfies P †
kPk = Ik.

To show a relation between the Krylov projection and the
low-rank model in Section II-A, we use the following facts
[7]. There exists an upper bidiagonal matrix Mk ∈ Rk×k,
whose diagonal elements are all one and superdiagonal
elements are all nonzero, such that

Pk = UkMk, Qk = VkMk. (14)

In addition, for Ωk in (3), it follows that

QT
kAkPk =MT

k ΩkMk, (15)

which is a symmetric tridiagonal matrix. In this notation, the
following fact is proven:

Lemma 2: Let A ∈ Rn×n, B ∈ Rn, and C ∈ R1×n

be such that (A,B) is reachable and (A,C) is observable.
Consider the biconjugation processes in (5) and (12) with
Rk and Ok in (9). Then, (16) holds for Ak in (8), where
β0 := CB and βi denotes the ith superdiagonal element of
Mk such that (14). Furthermore, define

Âk := P †
kAk−1Pk, B̂k := P †

kB, Ĉk := CPk (17)



QT
kAk−1Pk =


ω1 ω1β1
ω1β1 ω2 + ω1β

2
1 ω2β2

. . . . . . . . .
. . . . . . ωk−1βk−1

ωk−1βk−1 ωk−1β
2
k−1

 , QT
kB = (CPk)

T =


β0
0
...
...
0

 (16)

where P †
k is defined as in (13). Then, for any R ∈ Rn×m

and S ∈ Rp×n, it follows that

S(zIn −Ak−1)
−1B = Ŝ(zIk − Âk)

−1B̂k

C(zIn −Ak−1)
−1R = Ĉk(zIk − Âk)

−1R̂
(18)

for all k ∈ {2, . . . , ν}, where R̂ := P †
kR and Ŝ := SPk.

In particular, if (Ak−1, R) and (Ak−1, S) are reachable and
observable, respectively, then (Âk, R̂, Ĉk) and (Âk, B̂k, Ŝ)
are minimal realizations.

Lemma 2 shows that the Krylov projection of the low-
rank model (Ak−1, B, C) onto the k-dimensional reachable
and observable subspaces of (A,B,C) leads to the exact
dimension reduction. This can be regarded as the extraction
of a minimal realization, i.e., a reachable and observable
realization, from the low-rank model.

III. MULTIRESOLVED CONTROL

A. Observation and Stabilization via Redundant Realization

Consider a discrete-time linear system

Σ :

 xt+1 = Axt +But +Rwt

yt = Cxt
zt = Sxt

(19)

where A ∈ Rn×n, B ∈ Rn, C ∈ R1×n, R ∈ Rn×m,
S ∈ Rp×n, and x0 ∈ Rn. In the rest of this paper, we assume
that (A,B) is reachable, (A,R) is stabilizable, (A,C) is
observable, and (A,S) is detectable. For convenience of
arguments, we express measurable (available) quantities by
the bold face, e.g., ut and yt in (19).

In the following, we design a compensator that aims at sta-
bilizing the transitory behavior of systems while cooperating
with a standard controller. More specifically, we consider
a situation where a transitory compensator begins to work
at t = 0 for stabilizing an unknown disturbance, described
as an unknown initial state. Furthermore, we suppose that a
standard controller has observed the system state for t < 0
to accomplish a control objective in normal circumstances.

We first introduce the following redundant state-space
realization, similar to one used in [9]:

Lemma 3: Consider Σ in (19). Let Σ̃ be given by (23)
where x̂0 is a constant, Ak is defined as in (8) and

Γk :=
ν∑

i=k

ω−1
i ϕiψ

T
i . (21)

Then, it follows that

xt = x
(1)
t + x

(2)
t , ∀t ∈ {0, 1, . . .} (22)

and {
yt = y

(1)
t + y

(2)
t

zt = z
(1)
t + z

(2)
t ,

∀t ∈ {0, 1, . . .} (23)

for any x0 ∈ Rn and any sequences of ut ∈ R and wt ∈ Rm.
The expanded system Σ̃ in (23) can be regarded as a

redundant state-space realization of Σ in (19). The constant
x̂0 is to be used as a guess of the initial state x0 available
from past observation, i.e., the state observation by a standard
controller for t < 0. In other words, x0 − x̂0 in (23)
corresponds to an unknown disturbance arising at t = 0.

The cascaded structure of Σ̃ provides a possibility to use
the input signals ut and wt for controlling x(1)t and x(2)t in an
individual manner. Note that x(1)t has an ability to capture the
short-term behavior of Σ owing to the property of the low-
rank model shown in Lemma 1. Accordingly, x(2)t represents
the remaining behavior in the sense of the superposition as
in (22).

As shown in the relation of (23), even though yt and zt

are available as the measurement signals, the outputs y(i)t

and z(i)t of the redundant realization Σ̃ cannot be measured
as individual signals from the system Σ. To manage this
difficulty, we use the following fact, which stems from the
matching of the observable subspace shown in Lemma 1:

Lemma 4: Consider Σ̃ in (23) and let Σ̃obs be given by
(27), where the sequences of h

(1)
t and h

(2)
t denote external

inputs. If h(2)
t = 0 for all t ∈ {0, . . . , k − 1}, then

y
(2)
t = ŷ

(2)
t , ∀t ∈ {0, . . . , k − 1} (25)

for any x0 ∈ Rn and any sequences of ut ∈ R, wt ∈ Rm,
and h

(1)
t ∈ Rn.

Lemma 4 shows that, as long as h
(2)
t = 0, the virtual

output y(2)t of the redundant realization Σ̃ can be exactly
constructed as the output ŷ

(2)
t of its Luenberger-type ob-

server Σ̃obs during the limited interval of t ∈ {0, . . . , k−1}.
From this fact in conjunction with (23), we see that y(1)t is
measurable as yt−ŷ

(2)
t during the limited interval. This idea

leads to the following result:
Theorem 1: Consider Σ̃ in (23) and Σ̃obs in (27). Let

h
(1)
t ,h

(2)
t ∈ Rn in (27) be given by

h
(1)
t = δtH

(1)
(
yt − ŷ

(1)
t − ŷ

(2)
t

)
h
(2)
t = δtH

(2)
(
zt − ẑ

(1)
t − ẑ

(2)
t

)
,

(26)

where yt ∈ R and zt ∈ Rp associated with Σ in (19) satisfy
(23), and

δt :=

{
0, t ∈ {0, . . . , k − 1}
1, t ∈ {k, k + 1 . . . , }, δt := 1− δt. (27)



Σ̃ :



[
x
(2)
t+1

x
(1)
t+1

]
=

[
A Γk

0 Ak−1

] [
x
(2)
t

x
(1)
t

]
+

[
Rwt

But

]
,

[
x
(2)
0

x
(1)
0

]
=

[
x̂0

x0 − x̂0

]
[
y
(2)
t

y
(1)
t

]
=

[
Cx

(2)
t

Cx
(1)
t

]
[
z
(2)
t

z
(1)
t

]
=

[
Sx

(2)
t

Sx
(1)
t

] (23)

Σ̃obs :



[
x̂
(2)
t+1

x̂
(1)
t+1

]
=

[
A Γk

0 Ak−1

] [
x̂
(2)
t

x̂
(1)
t

]
+

[
Rwt

But

]
+

[
h
(2)
t

h
(1)
t

]
,

[
x̂
(2)
0

x̂
(1)
0

]
=

[
x̂0

0

]
[

ŷ
(2)
t

ŷ
(1)
t

]
=

[
Cx̂

(2)
t

Cx̂
(1)
t

]
[

ẑ
(2)
t

ẑ
(1)
t

]
=

[
Sx̂

(2)
t

Sx̂
(1)
t

] (27)

Then, ϵ(1)t := x
(1)
t − x̂

(1)
t and ϵ(2)t := x

(2)
t − x̂

(2)
t obey{

ϵ
(2)
t+1 = (A− δtH

(2)S)ϵ
(2)
t + (Γk − δtH

(2)S)ϵ
(1)
t

ϵ
(1)
t+1 = (Ak−1 − δtH

(1)C)ϵ
(1)
t

(28)

for any sequences of ut ∈ R and wt ∈ Rm. Furthermore, if
Ak−1 − δtH

(1)C is transitionally Schur and A − H(2)S is
Schur, then

lim
t→∞

ϵ
(1)
t = 0, lim

t→∞
ϵ
(2)
t = 0

for any x0 ∈ Rn.

Theorem 1 shows that, by switching the output feedback
as in (26), the observer Σ̃obs can estimate the states of
the redundant realization Σ̃ in an individual manner. The
feedback of estimated states leads to a dynamical stabilizing
controller as follows:

Theorem 2: In the same notation as that in Theorem 1,
assume that Ak−1−δtH(1)C is transitionally Schur and A−
H(2)S is Schur. Let

ut = F (1)x̂
(1)
t , wt = F (2)x̂

(2)
t . (29)

For Σ̃ in (23) satisfying (22) with respect to Σ in (19), if
Ak−1 +BF (1) and A+RF (2) are Schur, then

lim
t→∞

x
(1)
t = 0, lim

t→∞
x
(2)
t = 0 (30)

for any x0 ∈ Rn.

The switching control system in Theorem 2, which we call
a multiresolved control system, consists of the cascaded con-
nection of a low-rank component and a full-rank component
(i.e., low and high resolution components), each of which
stabilizes the states x(1)t and x(2)t of the redundant realization
Σ̃. Clearly, (30) implies the stability of the original xt in the
closed-loop system.

B. Implementation in Minimal Dimension

In this subsection, we consider implementing the low-rank
component in the multiresolved control system by a lower-
dimensional realization.

Lemma 5: Consider A ∈ Rn×n, B ∈ Rn, and C ∈ R1×n.
For Ak−1 defined as in (8), there exist Fk and Hk such that
Ak−1+BFk is Schur, Ak−1−δtHkC is transitionally Schur,
and

imFT
k ⊂ imOk, imHk ⊂ imRk, (31)

where Rk and Ok are defined as in (9).
On the basis of this fact in conjunction with the extraction

of the minimal realization in Lemma 2, we obtain a tractable
realization of the multiresolved control system as follows:

Theorem 3: Consider Σ in (19). Let

K :

 ξt+1 = AKξt + δtH(zt − ẑt) + ϕkγt, ξ0 = x̂0

wt = Fξt
ŷt = Cξt

(32)
where δt is defined as in (27) and

AK := A+RF − δtHS.

Furthermore, with Âk, B̂k, and Ĉk in (17), let

π :


ηt+1 = Âπηt+1 + δtĤk(yt − ŷt), η0 = 0

ut = F̂kηt+1

γt = (ekk)
Tηt+1

ẑt = Ŝηt+1
(33)

where δt is defined as in (27), Ŝ := SPk, and

Âπ := Âk + B̂kF̂k − δtĤkĈk.

For Σ̃ in (23) satisfying (22) with respect to Σ, if A+RF ,
A − HS, and Âk + B̂kF̂k are Schur and Âk − δtĤkĈk is
transitionally Schur, then (30) holds for any x0 ∈ Rn.

Theorem 3 shows that the multiresolved control system
can be implemented as the conventional observer-based state
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Fig. 1. Interconnection structure of power generators.

feedback controller K in (32) to which the low-dimensional
compensator π in (33) is attached. The low-dimensional part
can be regarded as a transitory compensator that stabilizes the
short-term system behavior captured by the low-rank model
in Section II.

IV. ILLUSTRATIVE EXAMPLE

A. Frequency Variation Model for Power Networks

In this section, we perform a numerical simulation on the
stabilization of frequency variations. Let us consider a power
network consisting of five areas shown in Fig. 1, where the
nodes represent power generators and the edges represent
the interconnection among the generators. In this network,
the generators in each area are densely connected whereas
they are sparsely connected among the five areas. Thus, the
states of generators belonging to the same area tend to be
synchronized each other.

In the following, we model the dynamics of the ith
generator as [10]

miθ̈i + diθ̇i +
∑
i ̸=j

ki,j(θi − θj) = ui + wi (34)

where mi denotes the inertial constant, di denotes the damp-
ing constant, ki,j denotes the coupling strength coefficient
between generators, θi denotes the angle deviation with
respect to a basis generator, and ui denotes the input torque.
The constants are given as follows. As for the coupling
strength coefficient between interconnected nodes, we give
ki,j = −1 if the ith and jth nodes belong to an identical
area, and ki,j = −0.1 if they belong to different areas.
Furthermore

ki,i =


1−

∑
i ̸=j

ki,j , i ∈ {1, 25}

−
∑
i ̸=j

ki,j , i ∈ {1, . . . , 25}\{1, 25}.

The damping constant is given as di = 0.02 and the inertial
constant is given randomly as mi ∈ [0.35, 0.65] for each i.

For the control input wi, the same signal is supposed to
be applied to all the generators as

w := w1 = · · · = w25. (35)

On the other hand, the control input ui is applied to the
generators belonging to the first area as

u := u1 = · · · = u5, u6 = · · · = u25 = 0. (36)
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Fig. 2. Average feedback control for synchronous frequency variation.

Furthermore, the measurement output for constructing the
input signal wi is supposed to be the frequency variation
averaged over all generators, denoted by

z := θ̇1 + · · ·+ θ̇25. (37)

Similarly, the measurement output for the input signal ui is
available as the frequency variation averaged over the first
area generators, denoted by

y := θ̇1 + · · ·+ θ̇5. (38)

In this setting, we obtain Σ in (19) by applying the temporal
discretization based on the zero-order hold with the sampling
period of one second.

B. Simulation Result

1) The Case of Average Feedback Control: First, for the
frequency variation model in Section IV-A, we design an
average feedback controller that uses wt and zt, which are
the temporally discretized versions of w in (35) and z in (37),
as its input and output signals. This controller corresponds
to K in (32), for which, on the basis of the LQR design
technique, we find the feedback gains F and H such that
A+RF and A−HS are Schur.

From the setting of wt and zt, we can expect that this
average feedback controller works well for frequency vari-
ations synchronized in all generators. Supposing that such
synchronous frequency variations arise as normal circum-
stances, we calculate the response of the control system with
a frequency variation that is almost uniformly distributed
over all generators. Furthermore, we set the state of K being
identical to that of Σ, which can stem from past observation.
The trajectories of the angular velocity (frequency) devia-
tions are shown in Fig. 2, where the color of each set of lines
corresponds to that of each area in Fig. 1. From this figure,
we see that the frequency variation is properly stabilized by
the average feedback controller K as time goes on.

Next, in the same controller setting, we calculate the
response of the control system where a local frequency
variation is additionally injected into only the first area at
t = 0. More specifically, we consider the situation that the
guess of the initial state satisfies

x̂0 = Ax̂−1 +Rw−1, w−1 = F x̂−1,

where x̂−1 = x−1 holds, and the initial state of Σ satisfies
x0 = x̂0 + ζ where ζ denotes the local frequency variation,
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Fig. 3. Average feedback control for asynchronous frequency variation.
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Fig. 4. Multiresolved control for asynchronous frequency variation.

demonstrating a contingency circumstance. From the result
shown in Fig. 3, we see that the settling time becomes
longer than that in Fig. 2. This result implies that the
average feedback controller does not work well for frequency
variations arising in a specific area whereas it is effective for
uniform variations.

2) The Case of Multiresolved Control: In the following,
we show that local frequency variations can be effectively
stabilized by implementing a low-dimensional transitory
compensator π in (33), which uses ut and yt, denoting the
discretized versions of u in (36) and y in (38), as its input
and output signals. Note that, because these signals contain
the information on the generators in the first area, they
are expected to be suitable for stabilizing local frequency
variations arising in the first area.

When k = 7, it turns out that Ak−1 defined as in (8) is
Schur. Using this Wedderburn matrix, we construct a seven-
dimensional model (Âk, B̂k, Ĉk), for which, on the basis of
the LQR design technique, we find the feedback gains F̂k

and Ĥk such that Âk + B̂kF̂k and Âk − ĤkĈk are Schur.
In Fig. 4, we show the system response in the same

frequency variation settings as those in Fig. 3 when imple-
menting the seven-dimensional transitory compensator into
the average feedback controller in Section IV-B.1. From this
figure, where the transitory compensator begins to work at
t = 0, we see that the stabilization of the frequency variation
is well performed in comparison with Fig. 3. Note that this
stabilization is achieved by the suitable cooperation of K
and π in (32) and (33), demonstrating the efficiency of the
proposed multiresolved control. Such cooperation work of
different controllers cannot be realized by a naive design
of each controller because negative interference between

controllers possibly occurs if they are implemented at the
same time.

In this example, the frequency deviation averaged over the
first area generators is fedback to the transitory compensator
only for t ∈ {0, . . . , 7}. After t = 8, the average deviation
over all generators is fedback to the average feedback con-
troller. This switching is represented by δt and δt in (32)
and (33). Note that the transitory compensation fades out as
time goes on, and then the multiresolved control coincides
with the average feedback control if the state of the transitory
compensator converges to zero. On the basis of this control
architecture, by designing multiple transitory compensators
that are specialized for individual areas in advance, we can
realize multiresolved control that can deal with unexpected
disturbances arising in a specific area. Such a control strategy
is reasonable because contingent disturbances can be dealt
with several transitory compensators depending on situations,
while a conventional controller can focus on accomplishing
a control objective in normal circumstances.

V. CONCLUSION

In this paper, we have proposed a design method of
multiresolved control for discrete-time linear systems. In
the multiresolved control, we implement a transitory com-
pensator specialized in stabilizing the short-term system
behavior into a conventional controller that is designed for
stabilizing the long-term behavior. This control architecture
enables efficient handling of possible contingencies, such
as unexpected disturbances, besides accomplishing a control
objective in normal circumstances. The efficiency of the
multiresolved control has been shown through an illustrative
example of frequency control in power networks.
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