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Abstract— In this paper, we propose a clustered model reduc-
tion method for networked dissipative systems, which consist
of identical subsystems having a dissipative property. In the
clustered model reduction, we perform both network structure
simplification and subsystem approximation, implemented as
block-diagonally structured orthogonal projection. To develop
this model reduction method, we derive a condition for the
existence of block-diagonal Lyapunov functions for networked
dissipative systems, given as a matrix inequality that involves
interconnection matrices and supply functions. It turns out that
the existence of such a structured Lyapunov function is key to
guaranteeing stability preservation. In addition, we perform
an approximation error analysis in terms of the H2-norm.
The efficiency of the proposed method is demonstrated though
numerical experiments for interconnected passive systems.

I. INTRODUCTION

In the real world, there can be found a number of dynami-
cal systems described as a network of subsystems. Examples
include power networks, biochemical networks, ecological
networks, and so forth [1], [2]. Because such networks are
generally modeled as large-scale systems and their network
structures are often complex, model reduction techniques
for networked systems are expected to be a useful tool to
simplify their analyses and syntheses.

In the literature, various model reduction methods can be
found; see, e.g. [3] for an overview. In particular, the bal-
anced truncation, the Krylov projection, and the Hankel norm
approximation are well known. However, even though such
methods can systematically produce a good approximate
model of original large-scale systems, they only focus on the
approximation of their input-to-output properties; thereby not
being concerned with their specific state-space realization.
This implies that an interconnection structure in resultant
approximate models is not especially taken care of. In this
sense, they are not necessarily suitable for the reduction of
networked systems.

Against this background, the authors have developed a
model reduction method to simplify a network structure
among subsystems, called clustered model reduction, for
networked systems composed of one-dimensional and two-
dimensional subsystems [4]–[6]. In this line of works, using
a notion of network clustering to find disjoint sets of sub-
systems to be aggregated, we have derived approximation
error bounds in terms of the H2-norm and the H∞-norm.
In particular, we clarify in [5] that the existence of diagonal
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Lyapunov functions is key to guaranteeing stability preser-
vation for the networks of one-dimensional subsystems;
stability preservation in [4], [6] can be readily achieved on
the premise of the symmetry or second-order form of original
systems.

As an extension of these developments, in this paper,
we propose a reduction method for networked systems
composed of higher-dimensional subsystems. In particular,
focusing on a homogeneous network composed of dissipative
subsystems, we propose a generalized version of clustered
model reduction where we perform both network structure
simplification and subsystem approximation. As for stability
preservation, we utilize the fact that an interconnected dis-
sipative system admits a block-diagonal Lyapunov function,
which can be viewed as a generalization of diagonal ones
in the case of one-dimensional subsystems. It turns out
that the existence of such a structured Lyapunov function
is key to guaranteeing the stability of approximate models.
Furthermore, we derive an approximation error bound in
terms of the H2-norm as a natural generalization of that
derived in [5]. It should be noted that our stability analy-
sis based on subsystem dissipativity is different from that
performed in, e.g. [7], [8], where the eigendecomposition
of interconnection matrices is used to decouple the stability
analysis of entire networks into those in the subsystem size.

Finally, several references on network structure-preserving
model reduction are in order. In [9], a reduction method has
been developed for networked systems, where the Krylov
projection or the balanced truncation is applied to each
subsystem for network structure preservation. However, this
method is not concerned with simplifying the network
structure among subsystems, but approximating the transfer
function of subsystems. Similar approaches are taken also in
[10], [11]. On the other hand, reduction methods for sim-
plifying network structures can also be found as [12]–[14].
Similarly to our works, these papers consider aggregating
the clusterized nodes of original networks, each of whose
node corresponds to a one-dimensional or two-dimensional
subsystem. In contrast to our error bound derivation with
respect to general clustering, they calculate an explicit value
of approximation errors by focusing on a special class of
clustering, called equitable partitions [2], and a particular
input-to-output mapping. Note that they do not explicitly care
about the stability of approximate models because it can be
ensured by the Laplacian or port-Hamiltonian structures of
original systems, similarly to [4], [6].

The rest of this paper is structured as follows. In Section II,
we first perform the stability analysis based on subsystem
dissipativity. In Section III, on the basis of the stability anal-



ysis, we develop a method of clustered model reduction for
homogeneous networks composed of dissipative subsystems.
For the implementation of the clustered model reduction, we
propose a sequential algorithm for finding reducible clusters.
Then, in Section IV, we perform a numerical experiment to
demonstrate the efficiency of the proposed clustered model
reduction method. Finally, concluding remarks are provided
in Section V.

Notation: We denote the set of real numbers by R, the
cardinality of a set I by |I|, the identity matrix by I , the
ith column of the n-dimensional identity matrix by eni , the
trace of a square matrix M by trM , the Kronecker product
of A and B by A⊗B, the set of orthogonal projectors by

Pn×n̂ := {P ∈ Rn×n̂ : PTP = I, n̂ ≤ n},

the orthogonal complement of P ∈ Pn×n̂ by P ∈ Pn×(n−n̂),
and the block diagonal matrix having matrices M1, . . . ,Mn

on its block diagonal by diag(M1, . . . ,Mn).
For a set I ⊆ {1, . . . , n}, let enI ∈ Rn×|I| denote the

matrix composed of eni for i ∈ I. The 2-induced norm and
the Frobenius norm of a matrix M are defined by

∥M∥ :=
√
λmax(MTM), ∥M∥F :=

√
trMTM,

where λmax(·) denotes the maximal eigenvalue. The positive
definiteness and the positive semidefiniteness of a symmetric
matrix M are denoted by M ≻ 0 and M ⪰ 0. The negative
definiteness is denoted similarly. The H∞-norm of a stable
transfer matrix and the H2-norm of a stable proper transfer
matrix are defined by

∥G(s)∥H∞ := sup
ω∈R

∥G(jω)∥

∥G(s)∥H2 :=
√

1
2π

∫∞
−∞ ∥G(jω)∥2Fdω,

respectively.

II. PRELIMINARIES OF HOMOGENEOUS NETWORKS

A. System Description

We consider a network of N identical subsystems, whose
dynamics is expressed as

Σi :

{
ẋi = Axi +Bui

yi = Cxi,
(1)

where xi ∈ Rn denotes the state of the ith subsystem, and
ui ∈ Rm and yi ∈ Rm denote its input and output signals to
be used for the interconnection among subsystems. For the
stacked input and output signals denoted as

u := [uT
1 , . . . , u

T
N ]T, y := [yT1 , . . . , y

T
N ]T,

the subsystem interconnection is defined by

u = (Γ ⊗ I)y (2)

where Γ ∈ RN×N denotes an interconnection matrix. Note
that this interconnection is rewritten as ui =

∑N
j=1 γi,jyj

where γi,j denotes the (i, j)-element of Γ . Then, for the
stacked state denoted as

x := [xT
1 , . . . , x

T
N ]T,

the entire network system is obtained as

Σ : ẋ = Ax (3)

where the state transition matrix is given by

A := I ⊗A+ Γ ⊗BC. (4)

B. Stability Criteria Based on Subsystem Dissipativity

In the literature, a stability analysis of Σ in (3) based on
the eigendecomposition of Γ can be found [7]. Supposing
that the interconnection matrix Γ in (4) is diagonalizable, let
T be an eigenvector matrix of Γ . Then, from the similarity
transformation of A by T ⊗ I , it can be proven that

spec(A) =
∪

λ∈spec(Γ)

spec(A+ λBC), (5)

where spec(·) denotes the set of eigenvalues. This would
be a practical approach because the stability analysis of
networked systems can be decomposed into that of small
subsystems i.e. A+λBC, which involves the eigenvalues of
Γ as a parameter. In theoretical physics, the notion of master
stability functions [8] is defined though this decomposition,
to analyze the synchronization of coupled oscillators.

However, such a decomposition approach is not necessar-
ily suitable for network structure-preserving analyses, such as
clustered model reduction. This is because the network struc-
ture among subsystems is lost though the diagonalization of
Γ . In addition, decomposed subsystems may be complex-
valued if Γ has complex eigenvalues. In view of this, it would
be desirable to devise a stability criterion not relying on such
an eigendecomposition.

To derive another stability criterion, let us utilize the
following notion of system dissipativity [15]–[17]. A linear
system Σi in (1) is said to be dissipative with respect to a
quadratic supply function

s(yi, ui) :=
[
yTi uT

i

]
Q

[
yi
ui

]
, Q =

[
Qyy Qyu

QT
yu Quu

]
, (6)

where both Qyy and Quu are assumed to be symmetric, if
there exists a quadratic storage function f(xi) := xT

i V xi

with V ≻ 0 such that

ḟ(xi) < s(yi, ui) (7)

along the trajectory of Σi. It is known that (7), called a
dissipative inequality, can be equivalently expressed as the
matrix inequality[

ATV + V A V B
BTV 0

]
−
[

C 0
0 I

]T
Q

[
C 0
0 I

]
≺ 0. (8)

In the rest of this paper, we assume without loss of generality
that Quu ≻ 0; this is a necessary condition for (8). On the
basis of this subsystem dissipativity, we derive an existence
condition for a structured Lyapunov function to prove the
stability of Σ in (3) according to [17].



Lemma 1: Let a network system Σ in (3) be given, and
assume that there exists V ≻ 0 such that (8) holds for Q in
(6). If there exists D ≻ 0 being diagonal such that

D⊗Qyy+ΓTD⊗QT
yu+DΓ⊗Qyu+ΓTDΓ⊗Quu ⪯ 0, (9)

then the positive definite function

F (x) := xTV x, V := D ⊗ V (10)

is a Lyapunov function to prove the stability of Σ.

Proof: For the supply function in (6), we have

Ḟ (x) <

N∑
i=1

dis(yi, ui) =
[
yT uT

]
QD

[
y
u

]
(11)

where di denotes the ith diagonal element of D and

QD :=

[
D ⊗Qyy D ⊗Qyu

D ⊗QT
yu D ⊗Quu

]
.

From the relation of (2), we see that the last term in (11) is
equal to

yT(D⊗Qyy+ΓTD⊗QT
yu+DΓ ⊗Qyu+ΓTDΓ ⊗Quu)y,

which is nonpositive if (9) holds. This proves the claim.

Lemma 1 shows an existence condition for the block-
diagonal Lyapunov function F in (10) when the intercon-
nected subsystems are dissipative. In particular, the condition
in (9) can be reduced when the subsystems are passive or
bounded real. To see this, let us first suppose that each of
subsystems is passive, i.e.

Qyy = Quu = 0, Qyu = I.

In this case, (9) is reduced to

ΓTD +DΓ ⪯ 0,

which implies the existence of a diagonal Lyapunov function
to prove the stability of Γ . It should be noted that such a
diagonal Lyapunov function can be found if Γ is semistable
and symmetric, or if it is semistable, irreducible, and Metzler
[5]. Next, let us suppose that each of subsystems is bounded
real, i.e.

Qyy = −I, Quu = γ2
0I, Qyu = 0,

which is equivalent to the L2-norm of Σi being less than γ0.
Then, (9) is reduced to

∥D 1
2ΓD− 1

2 ∥ ≤ γ−1
0 ,

which corresponds to the small gain theorem for the inter-
connection and subsystem gains.

C. Regularization of Networked Dissipative Systems

In this subsection, it turns out that the network of dissipa-
tive systems admits a realization having a negative definite
property. For convenience, we introduce the following ter-
minology.

Definition 1: A linear system Σ in (3) is said to be a
networked dissipative system if there exists V ≻ 0 such that
(8) holds for Q in (6) and there exists D ≻ 0 being diagonal
such that (9) holds. In particular, it is said to be regular if
A+AT ≺ 0.

In our previous works [5], [18], [19], it has been found that
the regularity in Definition 1 is essential to prove the stability
of approximate models obtained by orthogonal projection as
well as singular perturbation. The results derived below is re-
liant on the fact that, owing to the existence of the structured
Lyapunov function in (10), any networked dissipative system
can be transformed into a regular one without destroying its
interconnection structure. This can be seen as follows. Let
a Cholesky factor Vc be such that V = V T

c Vc. Then, the
similarity transformation by V c := D

1
2 ⊗ Vc yields

Ã+ Ã
T
= V −T

c

{
V A+ATV

}
V −1

c ≺ 0.

where V is defined as in (10) and Ã := V cAV −1
c . Note

that the interconnection structure of Ã is same as that of
A, in the sense that the Boolean structures of D

1
2ΓD− 1

2

and Γ are identical owing to D
1
2 being diagonal. Thus, any

networked dissipative system can be assumed to be regular,
i.e. (8) and (9) are satisfied by V = I and D = I , without
loss of generality.

III. CLUSTERED MODEL REDUCTION

A. Problem Formulation

In this section, we address a model reduction problem for
networked dissipative systems. To this end, let us introduce
external input and output signals for Σ in (3) as

Σ :

{
ẋ = Ax+Bw
z = Cx,

(12)

where A is defined as in (4), and B and C are matrices
having compatible dimension. For this system, we consider
an approximate model described by

Σ̂ :

{
˙̂x = P TAPx̂+ P TBw
ẑ = CPx̂,

(13)

where the orthogonal projector P is structured as

P := P ⊗H, P ∈ PN×N̂ , H ∈ Pn×n̂. (14)

By this structured projection, the network system is approx-
imated as

P TAP = I ⊗ Â+ Γ̂ ⊗ B̂Ĉ

where the reduced matrices are given by

Â := HTAH, B̂ := HTB, Ĉ := CH, Γ̂ := PTΓP.

This implies that the approximate model Σ̂ in (13) is a
network of N̂ identical subsystems, whose dynamics is



given by replacing A, B, and C in (1) with Â, B̂, and Ĉ.
Furthermore, the aggregated interconnection matrix is Γ̂ .

It should be noted that, if P is a dense matrix, then so is
Γ̂ in general. This implies that the interconnection structure
of the original system is lost through the approximation. To
preserve an interconnection structure among subsystems, we
impose a particular structure on P , stemming from the notion
of network clustering [4], [5].

Definition 2: Let L := {1, . . . , N̂}. The family of an
index set {I[l]}l∈L is referred to as a cluster set, each of
whose elements is called as a cluster, if each element I[l] is
a disjoint subset of {1, . . . , N} and satisfies∪

l∈L

I[l] = {1, . . . , N}.

Furthermore, an aggregation matrix is defined by

P := Πdiag(p[1], . . . , p[N̂ ]) (15)

where p[l] ∈ P |I[l]| and Π := [eNI[1]
, . . . , eNI[N̂]

].

Note that the permutation matrix Π works as interchang-
ing the indices of subsystems according to a cluster set.
Owing to the block-diagonal structure of P , the interconnec-
tion structure among clusters is preserved into approximate
models. On the basis of this definition, we formulate the
following structured model reduction problem.

Problem: Let a networked dissipative system Σ in (12) be
given, and assume that it is regular. Given a constant δ ≥ 0,
find an aggregation matrix P and an orthogonal projector
H in (14) such that the approximate model Σ̂ in (13) is a
networked dissipative system and it satisfies

∥G(s)− Ĝ(s)∥H2
≤ δ (16)

where the transfer matrices of Σ and Σ̂ are defined by

G(s) := C(sI −A)−1B,

Ĝ(s) := CP (sI − P TAP )−1P TB,
(17)

respectively.

B. Analysis of Approximate Models

1) Stability Analysis: Let us first analyze the stability of
approximate models. The following result shows that the
regularity of the original networked dissipative system is
preserved into its approximate model for any choice of P .

Theorem 1: If a networked dissipative system Σ in (12)
is regular, then so is the approximate model Σ̂ in (13) for
any aggregation matrix P and any orthogonal projector H
in (14).

Proof: Note that (8) and (9) are satisfied by V = I and
D = I owing to the regularity of Σ. To prove the regularity
of Σ̂, we first show that[

ÂT + Â B̂

B̂T 0

]
−
[

Ĉ 0
0 I

]T
Q

[
Ĉ 0
0 I

]
≺ 0.

This inequality follows from multiplying diag(H, I) by (8)
from the right side and its transpose from the left side. Next,
we show that

I ⊗Qyy + Γ̂T ⊗QT
yu + Γ̂ ⊗Qyu + Γ̂TΓ̂ ⊗Quu ⪯ 0.

Multiplying P⊗I by (9) from the right side and its transpose
from the left side, we have

I ⊗Qyy + Γ̂T ⊗QT
yu + Γ̂ ⊗Qyu + PTΓTΓP ⊗Quu ⪯ 0.

Thus, because of Quu ≻ 0, what remains to show is

Γ̂TΓ̂ ⪯ PTΓTΓP.

This is proven by the fact that

xT(PTΓTΓP − Γ̂TΓ̂ )x = ∥y∥2 − ∥Py∥2 ≥ 0

for all x ∈ RN̂ , where y := ΓPx.
Theorem 1 implies that the regularity of the original

networked dissipative system, or equivalently, the existence
of the structured Lyapunov function in (10) is key to guaran-
teeing stability preservation in the clustered model reduction.
Note that the stability of approximate models can be robustly
guaranteed regardless of the amplitude of approximation
errors.

2) Approximation Error Analysis: Next, we analyze ap-
proximation errors caused by the clustered model reduction.
It has been shown in [5] that the H2-norm in (16) is bounded
as

∥G(s)− Ĝ(s)∥H2 ≤ ∥Ξ(s)∥H∞∥P T
X(s)∥H2 (18)

where X and Ξ are both stable and defined by

X(s) := (sI −A)−1B,

Ξ(s) := CP (sI − P TAP )−1P TA+C.
(19)

In addition, it can be shown that the H∞-norm of Ξ is
bounded by a constant determined by A and C. In particular,
it is bounded by γ > 0 such thatAT +A 1√

γA CT

∗ −I 1
γC

T

∗ ∗ −I

 ≺ 0. (20)

Note that such a constant γ exists whenever Σ is regular.
On the other hand, to analyze the H2-norm of P

T
X , we

use the controllability gramian Φ ⪰ 0, which is the solution
of the Lyapunov equation

AΦ+ΦAT +BBT = 0. (21)

In the following arguments, we denote the summation of
principal submatrices by

Dn(M) := M1 + · · ·+MN (22)

where Mi ∈ Rn×n denotes the ith principal submatrix of
M ∈ RNn×Nn. Then we show the following lemma.

Lemma 2: Given a networked dissipative system Σ in
(12), let Φ ⪰ 0 be the solution of (21). Define

Ψ := ET(I ⊗H)TΦ(I ⊗H)E (23)



where E := [I ⊗ en̂1 , . . . , I ⊗ en̂n̂]. Then

∥P T
X(s)∥H2 =

√
trH

TDn(Φ)H + trP
TDN (Ψ)P , (24)

where X is defined as in (19).

Proof: Because the orthogonal complement of P can
be expressed as

P = [P ⊗H, I ⊗H], (25)

the square of the H2-norm in (24) is equal to

trP
T
ΦP = tr(I⊗H)TΦ(I⊗H)+tr(P ⊗H)TΦ(P ⊗H).

For the first term, from the definition in (22), we see that

tr (I ⊗H)TΦ(I ⊗H) = trH
TDn(Φ)H.

On the other hand, because of EET = I , the second term
is expressed as

trET(P P
T ⊗ I)EET(I ⊗H)TΦ(I ⊗H)E. (26)

By direct calculation, we can verify that

ET(P P
T ⊗ I)E = I ⊗ P P

T
.

Thus, (26) is equal to

tr (I ⊗ P )TΨ(I ⊗ P ) = trP
TDN (Ψ)P ,

which proves the claim.

Lemma 2 shows that the H2-norm of P
T
X can be

analyzed on the basis of Dn(Φ) and DN (Ψ). These matrices
can be used to find an orthogonal projector H and an
aggregation matrix P , as in the following procedure. The
optimal projector H minimizing the first term in (24) can be
found by the eigendecomposition of Dn(Φ). In particular,
let n̂ be the dimension of approximated subsystems, and let
λi ≥ 0 denote the ith largest eigenvalue of Dn(Φ). Then, it
follows that

min
H∈Pn×n̂

trH
TDn(Φ)H = λn̂+1 + · · ·+ λn. (27)

The minimizer H is given as the matrices composed of the
eigenvectors associated with λ1, . . . , λn̂, i.e.

Dn(Φ)H = Hdiag(λ1, . . . , λn̂). (28)

On the other hand, to analyze the second term in (24), we
use the expression of

trP
TDN (Ψ)P =

N̂∑
l=1

{
trΨI[l]

− pT[l]ΨI[l]
p[l]

}
(29)

where ΨI[l]
is the principal submatrix of DN (Ψ) compatible

with I[l], i.e.

ΨI[l]
:= (eNI[l]

)TDN (Ψ)eNI[l]
. (30)

This expression leads to the following notion of cluster
reducibility.

Definition 3: In the same notation as that in Lemma 2, a
cluster I[l] is said to be θl-reducible if

trΨI[l]
− pT[l]ΨI[l]

p[l] ≤ θl (31)

where ΨI[l]
is defined as in (30).

On the basis of Definition 3, we construct a cluster set
{I[l]}l∈L such that each of clusters is θl-reducible; see
Section III-C for a sequential clustering algorithm. For such
a cluster set, it readily follows that (29) is bounded by the
sum of θl.

As summarizing all the facts shown above, we state the
following theorem for the clustered model reduction of
networked dissipative systems.

Theorem 2: Given a regular networked dissipative system
Σ in (12), let γ > 0 be such that (20) holds. In the same
notation as that in Lemma 2, if the orthogonal projector H
satisfies (28) and the aggregation matrix P is given such that
each of clusters I[l] is θl-reducible, then the approximate
model Σ̂ in (13) is a regular networked dissipative system
and it satisfies

∥G(s)− Ĝ(s)∥H2
≤ γ

√∑n
i=n̂+1 λi +

∑N̂
l=1 θl (32)

where G and Ĝ are defined as in (17).

C. Remarks on Implementation

In this subsection, we give some remarks on the implemen-
tation of the proposed clustered model reduction. As shown
in Lemma 2, our method is based on using Φ and Ψ as
indices to construct a structured projector P . Note that the
orthogonal projector H is involved into Ψ in (23), which
is used to find an aggregation matrix P . This implies that
we need to determine H before finding P . Such an order of
implementation comes from the fact that the approximation
error is analyzed on the premise of P in (25). On the other
hand, we notice that it admits the alternative expression of

P = [P ⊗ I, P ⊗H].

From this, we can show that the same equation in (24) holds
when we replace Φ and Ψ with

(P ⊗ I)TΦ(P ⊗ I), Ẽ
T
ΦẼ,

respectively, where Ẽ := [I⊗ en1 , . . . , I⊗ enn]. These indices
are suitable for determining P before H .

Next, we consider constructing a set of reducible clusters.
From an argument similar to (27), we notice for (31) that

min
p[l]

{trΨI[l]
−pT[l]ΨI[l]

p[l]} = trΨI[l]
−λmax(ΨI[l]

), (33)

which is expected to be small when the rank of ΨI[l]
is

close to one. On the basis of (33), we propose the following
clustering algorithm, where, by letting the initial clusters as
I[i] = i for i ∈ {1, . . . , N}, we sequentially decrease the
number of clusters by merging two of them iteratively. Let
an index matrix DN (Ψ) be given and consider the situation
where a temporary cluster set has been formed. For the



sequential clustering, we find a pair of clusters I[i] and I[j]
such that they attain the minimum of

trΨI[i]∪I[j]
− λmax(ΨI[i]∪I[j]

),

and then we merge the pair of minimizers, i.e. I[i] is updated
to I[i]∪I[j]. This is repeated until when a stopping criterion
is attained. Finally, for the minimum in (33), denoted by θl,
the sequential algorithm produces a cluster set such that each
of clusters I[l] is θl-reducible. Note that the corresponding
aggregation weight p[l] is found as the eigenvector associated
with λmax(ΨI[l]

), which is the minimizer of (33).

IV. NUMERICAL EXPERIMENTS

A. System Description

In this section, we demonstrate the efficiency of the
proposed clustered model reduction method. Let us consider
giving the subsystem dynamics as an interconnected second
order system of{

Mξ̈i +Dξ̇i +Kξi = Fui

yi = FTξ̇i
(34)

where M ≻ 0 denotes a diagonal mass matrix, D ≻ 0
denotes a diagonal damper matrix, K ≻ 0 denotes a spring
stiffness matrix, and F is a matrix having a compatible
dimension. For xi := [ξTi , ξ̇

T
i ]

T, the subsystem dynamics can
be represented as Σi in (1) with

A =

[
0 I

−M−1K −M−1D

]
, B =

[
0

M−1F

]
,

C =
[
0 FT

]
,

(35)

whose dimension is denoted by n. Note that this Σi is passive
since the input and output are collocated [20]. Furthermore,
we give the interconnection matrix Γ in (4) as the negative
of the unweighted graph Laplacian of the Holme-Kim model
[1], which is known as an extension of the Barabasi-Albert
model describing complex networks. As shown in Section II,
this class of interconnected passive systems is stable and
can be regularized without destroying their interconnection
structure. Finally, the input and output matrices in (12) are
given as

B = [eN1 , eN2 , eN3 ]⊗B, C = I,

which imply that a set of external input signals is applied to
three of N subsystems and the evaluation output is taken as
the states of all subsystems.

B. Results of Clustered Model Reduction

We first show the result when giving the number of
subsystems as N = 50 and the dimension of each subsystem
as n = 10, which yield a 500-dimensional interconnected
system. The interconnection structure of Γ is depicted in
Fig. 1, where the subsystems are denoted by the nodes
and the external inputs are applied to the arrowed ones.
Furthermore, instead of specifying the system parameter
matrices in (35), we plot the Bode diagram of Σi by the
solid lines in Fig. 2. Using our clustered model reduction for
this system, we obtain the result in Fig. 3, where the relative

Fig. 1. Original interconnection structure.

approximation errors, defined as ∥G − Ĝ∥H2/∥G∥H2 , are
plotted versus the dimensions of approximate models. In
particular, the line with diamonds corresponds to the case
where we implement the sequential clustering algorithm in
Section III-C, while the approximation by the orthogonal
projection is not applied, i.e. H = I in (14). The lines
with circles and squares correspond to the cases where the
sequential clustering is performed after applying orthogonal
projection by H ∈ R10×8 and H ∈ R10×6 that reduces the
dimensions of subsystems to n̂ = 8 and n̂ = 6, respectively.
From this figure, we see that the case of H = I provides the
best approximation precision among them.

Next, we show the result for N = 10 and n = 50, which
yield another 500-dimensional interconnected system. The
interconnection structure of Γ is depicted in Fig. 4 and
the Bode diagram of Σi is shown by the dotted lines in
Fig. 2. In this case, since the redundancy of the subsystem
dynamics may be larger than the previous setting, orthogonal
projection for subsystem approximation is expected to be
more effective. The resultant approximation errors are plotted
in Fig. 5, where we use the notation similar to that in Fig. 3.
In particular, the line with diamonds corresponds to the case
where we only implement the sequential clustering, while
the lines with circles and squares correspond to the cases
where the sequential clustering is performed after applying
orthogonal projection by H ∈ R50×40 and H ∈ R50×30

that reduces the dimensions of subsystems to n̂ = 40 and
n̂ = 30. From this figure, we see that the three lines
cross each other. This means that there is an appropriate
choice of reduced dimensions determined by clustering and
orthogonal projection depending on the resultant dimension
of approximate models.

V. CONCLUDING REMARKS

In this paper, we proposed a clustered model reduction
method for networked dissipative systems, where both net-
work structure simplification and subsystem approximation
are performed. To develop such a clustered model reduc-
tion method, we derived a condition for the existence of
block-diagonal Lyapunov functions for networked dissipative
systems, which is essential for stability preservation in the
clustered model reduction. In addition, we performed an
approximation error analysis in terms of the H2-norm.

In the proposed clustered model reduction, orthogonal
projection is used for subsystem approximation. On the basis
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Fig. 2. Bode diagrams of subsystems.
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Fig. 3. Approximation errors versus dimensions of approximate models.

of the fact that singular perturbation approximation admits
a projection-like formula shown in [18], [19], it would be
possible to generalize the result for orthogonal projection to
that for singular perturbation approximation. This is one of
future works to pursue.
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