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Abstract— In this paper, we analyze the eigenstructure of
network systems having symmetrical graph motives and apply
it to reduced order controller design based on their aggre-
gated models. In the eigenstructure analysis, formulating the
symmetry of graph motives as the graph automorphism, we
show that particular eigenspace decomposition of network
systems can be found by analyzing the common eigenspaces
of all possible permutation matrices, with regard to the graph
automorphism. This eigenspace decomposition explains the ap-
pearance of uncontrollable and unobservable subspaces that can
be removed by aggregating, i.e., averaging, symmetrical graph
motives. Furthermore, it turns out that the resultant aggregated
model, whose state behavior tracks a kind of centroids of that
of the original network system, has good compatibility with
observer-based state feedback controller design. The efficiency
of the aggregated controller design method is numerically
demonstrated by output regulation of second-order oscillator
networks.

I. INTRODUCTION

Many of network systems found in the real world have
been shown to share several common characteristics, e.g.,
the small-world property, the scale-free property, high cluster
coefficients, and so forth [1], [2]. Besides them, some par-
ticular patterns of interconnections, called network motives
or graph motives, can often be found [3], [4]. Graph motives
correspond to recurring subnetworks, which can naturally
appear as network growth with duplication [5]. This kind
of duplication endows resultant networks with geometrical
symmetry in the sense that the permutation of graph motives
leave the entire network invariant.

In this paper, formulating the symmetry of graph mo-
tives as the graph automorphism [6], we first analyze the
eigenstructure of network systems having symmetrical graph
motives. On the basis of the fact that the simultaneous
diagonalizability of square matrices is equivalent to the
commutativity of multiplication [7], we show that particular
eigenspace decomposition of network systems can be found
by analyzing the common eigenspaces of all possible per-
mutation matrices that leave networks invariant. Our result
is deduced purely from the symmetry of graph motives;
The analysis based on the simultaneous diagonalizability
makes no distinction among directed and undirected graphs,
adjacency and graph Laplacian matrices, and others [8].
From this viewpoint, our analysis can be seen to be more
universal than those in [9], [10], each of which focuses on
adjacency and graph Laplacian matrices.
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Furthermore, as an application of the eigenstructure analy-
sis, we develop a reduced order controller design method that
makes use of a reduced order model obtained by aggregating
symmetrical graph motives. This method is based on the fact
that the existence of symmetrical graph motives makes a
local state space associated with the motives both uncontrol-
lable and unobservable, when the input and output ports are
assigned to nodes other than the motives. It will turn out that
an aggregated model given by removing the redundant state
spaces has good compatibility with state feedback controller
design based on average state observation, which tracks
a kind of centroids of the system states. The efficiency
of this aggregated controller design method is numerically
demonstrated by output regulation of second-order oscillator
networks, which are often used as a primary model of rotary
appliances in power systems control [11].

To clarify our contribution, we provide some references
on the controllability analyses of network systems. In the
line of works [12], [13], a controllability analysis based on
the equitable partition is performed for single-leader leader-
follower networks with a consensus protocol. In particular, a
condition to make network systems completely controllable
is derived in view of graph symmetry from the equitable
partition. Most of network controllability analyses, e.g., [14],
focus on the discussion of complete controllability, i.e., the
ability to steer the states to an arbitrary place. It should
be noted that this complete controllability is not necessarily
realistic for the control of large-scale network systems. For
example, in power systems control, it is not necessarily rea-
sonable to individually handle a large number of generators
from the viewpoint of operation and implementation costs.
In this sense, the complete controllability is generally strict
and excessive for the control of large-scale network systems.

On the other hand, for large-scale network systems, we are
not always interested in the exact steering of individual state
variables towards individual target values, but we are only
interested in the control of a kind of macroscopic behavior,
e.g., the centroids (averages) of node groups classified with
respect to synchronism among nodes [15]–[17]. As being
compatible with this viewpoint, our aggregated controller
design is performed on the premise that the network systems
of interest involve a number of symmetrical graph motives
whose states are to be synchronized with each other. This can
be viewed as the case where they involve a number of stable
uncontrollable and unobservable modes corresponding to the
disagreement with the average of the state space associated
with the motives. As long as the input and output ports are
assigned to make their aggregated model controllable and



observable, we can design the aforementioned aggregated
controller in a systematic manner. Through the arguments in
this paper, we aim at showing that making explicit use of
the redundancy from graph symmetry, i.e., the existence of
particular stable modes that are both uncontrollable and un-
observable, can be a key insight into performing reasonable
control system design that is scalable to large-scale network
systems.

The rest of this paper is organized as follows. In Sec-
tion II, we first provide the system description of dynamical
networks having symmetrical graph motives. In Section III,
we analyze the eigenstructure of the network systems from
the viewpoint of the graph automorphism and then apply the
analysis to reduced order controller design based on their
aggregated models. Section IV demonstrates the efficiency of
our aggregated controller design method numerically. Finally,
Section V provides concluding remarks of this paper.

Notation: We denote the identity matrix by I , the all-ones
vector by 1 , the image of a matrix A by imA, the kernel by
kerA, the block diagonal matrix whose diagonal blocks are
A and B by diag(A,B), the Kronecker product of A and
B by A ⊗ B, the set of eigenvalues of A by spec(A), the
orthogonal complement of a subspace V by V⊥, the column
vector stacking a set of vectors xi by col(x1, . . . , xn), and
the subspace spanned by xi by span{x1, . . . , xn}. A pair
(λ, v) is said to be an eigenpair of A if Av = λv holds. A
subspace V is said to be an eigenspace of A associated with
an eigenvalue λ if V ⊆ ker λI −A.

Let V1 and V2 be subspaces of a vector space. The sum
of V1 and V2 is denoted by

V1 + V2 := {x1 + x2 : x1 ∈ V1, x2 ∈ V2},

which may be rewritten as
∑

i∈{1,2} Vi. The union is denoted
by

V1 ∪ V2 := {x : x ∈ V1 or x ∈ V2},

which may be rewritten as
∪

i∈{1,2} Vi, and the intersection
is denoted by

V1 ∩ V2 := {x : x ∈ V1 and x ∈ V2},

which may be rewritten as
∩

i∈{1,2} Vi.

II. SYSTEM DESCRIPTION

In this paper, we consider a linear network system evolving
over graphs described by

Σ :

{
ẋ = Ax+Bu, x(0) = x0

y = Cx
(1)

where the system matrices are supposed to be structured as

A =

[
A0 H0(1

T ⊗ F )
(1 ⊗H)F0 I ⊗A+ Γ ⊗BC

]
,

B =

[
B0

0

]
, C =

[
C0 0

]
.

(2)

In this formulation, the second half dynamics corresponds
to the network of a set of graph motives having the same
dynamics, whose interconnection structure is represented
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Fig. 1. Examples of chain graph with three motives.

by Γ , whereas the first half dynamics corresponds to the
remaining part other than the graph motives. The details are
explained through the following example.

Example: Let us consider the dynamics based on the
adjacency matrices of the two graphs in Figs. 1-(A) and
(B). Both are composed of a chain graph with three graph
motives, depicted by the dashed-dotted line and dashed lines,
respectively. The system matrices of the chain part are given
as follows. The state transition matrix A0 is the tridiagonal
matrix whose superdiagonal and subdiagonal elements are
all one. The input and output matrices are given as

B0 = CT
0 = col(1, 0, . . . , 0), H0 = FT

0 = col(0, . . . , 0, 1),

which correspond to the input and output nodes with the
external signals u and y and the interconnection with the
motives, respectively. On the other hand, the dynamics of
the motives is described by

A =

 0 1 1
1 0 0
1 0 0

 , B = H = CT = FT =

 1
0
0

 ,

where B and C are relevant to the interconnection among
motives, and H and F are relevant to the interconnection
with the chain part. The difference between the graphs in
Figs. 1-(A) and (B) appears in the interconnection matrices,
which are given as

Γ = 0, Γ =

 0 1 1
1 0 1
1 1 0

 , (3)

respectively. The cases of e.g., directed graphs, edge-
weighted networks, and graph Laplacian matrices can be
considered in a similar manner. □

In this paper, we first analyze the eigenstructure of A in (2)
deduced from the existence of symmetrical graph motives,
and then apply the analysis to aggregated controller design
for the network system Σ in (1).



III. EIGENSTRUCTURE ANALYSIS

A. Eigenstructure from Symmetrical Graph Motives

In this subsection, we investigate a general principle of the
structure of eigenspaces of A in (2) that is deduced from
symmetrical graph motives. This eigenstructure analysis is
dependent on the symmetry of Γ , but not reliant on the
specific choices of system matrices in (2).

An interconnection matrix Γ is said to be symmetrical
with respect to a permutation matrix Π if

ΠΓ = ΓΠ . (4)

We denote the set of all permutation matrices that satisfy
(4) by P[Γ ], in which we do not include the identity
matrix without loss of generality. This is called the graph
automorphism [6]. From (4), we have ΠΓΠ T = Γ , implying
that interchanging a set of indices, compatible with a node
set having symmetry, makes no change in the matrix Γ .
For example, both interconnection matrices Γ in (3) are
symmetrical with respect to any permutation matrix. Note
that this definition of symmetry makes no distinction between
directed and undirected graphs as well as adjacency and
graph Laplacian matrices. Furthermore, ΠΓT = ΓTΠ is also
led by (4).

From Π1 = 1 , we can verify that

ΠA = AΠ , Π := diag(I,Π ⊗ I), (5)

which implies that A is symmetrical with respect to the
permutation matrix Π . It is known that square matrices are
simultaneously diagonalizable if and only if they commute
[7]. From this fact, we see that Π and Γ in (4) share the same
eigenvectors, as well as Π and A in (5) do so. Therefore,
the eigenspaces of A can be deduced from the analysis of
Π . In the following, we assume that the square matrices,
e.g., A and Γ , are all diagonalizable.

Because Π is unitary for any Π ∈ P[Γ ], the eigenvalues
of Π locate on the unit circle in the complex plane and their
eigenvectors can form an orthogonal basis. From the block
diagonal structure of Π in (5), we see that the eigenvector
v of Π associated with the multiple eigenvalues of π = 1
lies in the space of

v ∈ im

[
I
0

]
+ im

[
0

w ⊗ I

]
(6)

where w is an eigenvector of Π associated with the multiple
eigenvalues of π = 1. On the other hand, the eigenvector v
of Π associated with π ∈ spec(Π ) \ {1} lies in the space
of

v ∈ im

[
0

w ⊗ I

]
(7)

where w is an eigenvector associated with π ∈ spec(Π )\{1}.
Thus we see that the eigenspace analyses of Π can be divided
into the cases of π = 1 and π ̸= 1.

First we show the following result deduced by analyzing
the eigenspaces of Π ∈ P[Γ ] associated with π = 1.

Theorem 1: Let Γ be symmetrical. If∩
Π∈P[Γ ]

ker I −Π = span{1}, (8)

then, for any eigenvalue of Γ , there exists an associated
eigenvector w such that

w ∈ span{1} ∪ span{1}⊥. (9)

Proof: Let q be the number of permutation matrices that
belong to P[Γ ]. Denote Vi := ker I − Πi for i = 1, . . . , q.
Note that

V⊥
i ⊆ span{1}⊥ (10)

because the eigenvectors associated with π ∈ spec(Πi)\{1}
are orthogonal to the eigenspace span{1} associated with
π = 1, namely

V⊥
i =

∑
π∈spec(Πi)\{1} ker πI −Πi.

Furthermore, it follows that each of eigenvectors of Γ lies
in either Vi or V⊥

i , because Πi and Γ are simultaneously
diagonalizable. Consider an eigenvector w ∈ Vi of Γ . Then
we see that

w ∈ (Vi ∩ Vj) ∪
(
Vi ∩ V⊥

j

)
, ∀j = 1, . . . , q.

If w ∈ Vi ∩V⊥
j for some j, then w ∈ span{1}⊥ because of

(10). On the other hand, if w ̸∈ Vi ∩ V⊥
j for all j, then

w ∈
∩

j∈{1,...,q} Vj = span{1}

owing to (8). This proves the claim.

Theorem 1 shows that the eigenspaces of an interconnec-
tion matrix Γ satisfying (8) is decomposed as in (9). In
the rest of this paper, an interconnection matrix Γ is said
to be strictly symmetrical if (8) holds. One may think that
the eigenvectors of a graph Laplacian matrix always admit
the decomposition of (9). However, note that Theorem 1 is
deduced from only the symmetry in the sense of (4), whose
definition makes no distinction among adjacency and graph
Laplacian matrices and other details.

Example: Both interconnection matrices of Γ in (3) are
strictly symmetrical. This can be easily verified because they
are symmetrical with respect to any permutation matrices,
including the circulant permutation matrix given as

Π = e1e
T
2 + e2e

T
3 + · · ·+ eνe

T
1 , (11)

where ei denotes the ith unit vector and ν denotes the size
of Π . Since the eigenvectors of this permutation matrix
coincides with the discrete Fourier transform vectors [18],
it satisfies ker I−Π = span{1}, which is sufficient for (8).
Furthermore, we see that any interconnection matrix Γ being
circulant, e.g., in the left of Fig. 2, is strictly symmetrical,
because all circulant matrices commute.

Next let us consider an interconnection matrix of

Γ =

 γ1 β β
β γ2 0
β 0 γ2

 , (12)
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Fig. 2. Examples of symmetrical interconnection structure, where the
motives are denoted by “M”.

which is depicted in the center of Fig. 2. We can easily
verify that this Γ is symmetrical with respect to the single
permutation matrix

Π = diag(1, I), I :=

[
0 1
1 0

]
. (13)

Thus we obtain

ker I −Π = span {col(1, 0, 0), col(0, 1, 1)} . (14)

This shows that Γ in (12) is not classified into strictly
symmetrical matrices, even though a particular case, e.g.,
the symmetric graph Laplacian matrix given as γ1 = −2β
and γ2 = −β, admits the property of (9).

Finally, let us consider the case of

Γ =


γ1 β1 0 β′

2

β′
1 γ2 β2 0
0 β2 γ1 β′

1

β′
2 0 β1 γ2

 , (15)

which is depicted in the right of Fig. 2; a similar example
can be found in [10]. If γ1 = γ2, β1 = β′

1, and β2 = β′
2,

we have

P[Γ ] =

{[
0 I
I 0

]
,

[
I 0
0 I

]
,

[
0 I
I 0

]}
, (16)

otherwise

P[Γ ] =

{[
0 I
I 0

]}
.

Then the term in the left-hand side of (8) is given as∩
Π∈P[Γ ]

ker I −Π = im

[
I
I

]
∩ im I ⊗

[
1
1

]
∩ im

[
I
I

]
for the former case, which is equal to span{1}, while it is
given as ∩

Π∈P[Γ ]

ker I −Π = im

[
I
I

]
for the latter case. Thus Γ in (15) is strictly symmetrical only
in the former case. Note that this strict symmetry is inherent
in Γ with arbitrary choice of the parameters γi and βi. □

On the basis of Theorem 1, which shows the eigenspace
decomposition of Γ led by analyzing the eigenspaces of Π
associated with π = 1, we next analyze the eigenspaces of A
in (2). Owing to the commutativity of (5), the decomposition

of eigenspaces of A can be deduced from the strict symmetry
of Γ as follows.

Theorem 2: Consider A in (2) with Γ being strictly
symmetrical. Then, for any eigenvalue of A, there exists an
associated eigenvector v such that

v ∈
(
im

[
I
0

]
+ im

[
0

1 ⊗ I

])
∪ im

[
0

w ⊗ I

]
(17)

where w is an eigenvector of Γ such that w ∈ span{1}⊥.
Proof: From (5), we see that the eigenvectors of A can

be classified into (6) and (7). Because Γ is assumed to be
strictly symmetrical, its eigenvector can also be classified as
shown in Theorem 1. Thus w in (6) satisfies w ∈ span{1}
whereas w in (7) satisfies w ∈ span{1}⊥.

Let (λγ , vγ) be an eigenpair of A+γBC for γ ∈ spec(Γ )
associated with an eigenvector w ∈ span{1}⊥. Then we
have

A col(0, w ⊗ vγ) = λγcol(0, w ⊗ vγ),

which shows that col(0, w ⊗ vγ) is an eigenvector of A
associated with λγ ∈ spec(A+ γBC). Thus this proves the
claim.

Theorem 2 shows that the eigenvectors of A in (2)
with a strictly symmetrical interconnection matrix Γ can
be classified into two types as in (17), which stem from
the strict symmetry. Note that the eigenmodes of Σ in (1)
classified into the latter of (17) are necessarily unobservable
because the corresponding eigenvectors lie in kerC. These
unobservable modes originate from the existence of sym-
metrical graph motives; Thus they appear regardless of the
specific choices of system matrices. By the arguments of the
dual space, we can say that uncontrollable modes appear also
from the symmetry.

The eigenvectors of Γ lying in span{1}⊥ can also be
deduced by analyzing the eigenspaces of Π associated with
π ∈ spec(Π ) \ {1}. This can be seen though the following
example.

Example: Let Γ be a symmetrical interconnection matrix.
Because Π ∈ P[Γ ] is simultaneously diagonalizable with Γ ,
the number of linearly independent eigenvectors of Γ lying
in an eigenspace of Π coincides with the dimension of the
eigenspace of Π . Therefore, if

dim ker πI −Π = 1, π ∈ spec(Π ) \ {1}

for some Π ∈ P[Γ ], then w ∈ ker πI −Π is an eigenvector
of Γ lying in span{1}⊥. For example, the discrete Fourier
transform vectors spanning span{1}⊥ are the eigenvectors
of both interconnection matrices Γ in (3), because they
are symmetrical with respect to the circulant permutation
matrix Π in (11), whose eigenvalues are distinct. The same
argument is valid for all circulant interconnection matrices.

Next let us consider Γ in (12), which is symmetrical with
respect to Π in (13). In this case, we have

ker πI −Π = span{col(0,−1, 1)}

for π = −1. Thus col(0,−1, 1) is an eigenvector of Γ
lying in span{1}⊥, which is not dependent on the parameter



choice of Γ . From (14), we see that other two eigenvectors
are given as

col(αi, 1, 1) ∈ span {col(1, 0, 0), col(0, 1, 1)}

where α1 and α2 are the solutions of

α2
i + β−1(γ2 − γ1)αi − 2 = 0.

These eigenvectors are dependent on the parameter choice
of γi and β.

Finally, let us consider Γ in (15) with γ1 = γ2, β1 =
β′
1, and β2 = β′

2, which satisfies (9). For each permutation
matrix in (16), the eigenspace ker πI − Π for π = −1 is
obtained as

V⊥
1 := span {col(1, 0,−1, 0), col(0, 1, 0,−1)} ,

V⊥
2 := span {col(1,−1, 0, 0), col(0, 0, 1,−1)} ,

V⊥
3 := span {col(1, 0, 0,−1), col(0, 1,−1, 0)} ,

respectively. Let us find three eigenvectors of Γ such that
any two of them are the elements of V⊥

1 , V⊥
2 , or V⊥

3 . To this
end, we calculate the intersections of two of them, leading
to

span {col(1,−1,−1, 1)} , span {col(1, 1,−1,−1)} ,
span {col(1,−1, 1,−1)} .

It turns out that these one-dimensional subspaces correspond
to the eigenvectors of Γ lying in span{1}⊥. They are not
dependent on the specific choice of γi and βi. □

B. Aggregation of Symmetrical Graph Motives

Let ν denote the number of symmetrical graph motives,
which corresponds to the size of Γ . As shown in Theorem 2,
a set of eigenvectors of A with a strictly symmetrical
interconnection matrix Γ can be classified into the two
types. According to this classification of eigenvectors, the
eigenvalues of A can also be classified as follows.

Lemma 3: For A in (2) with Γ being strictly symmetrical,
it follows that

spec(A) = spec(Â) ∪
∪

γ∈spec(Γ)\{γ0}

spec(A+ γBC) (18)

where the eigenspace span{1} of Γ is associated with γ0 ∈
spec(Γ ) and

Â :=

[
A0

√
νH0F√

νHF0 A+ γ0BC

]
. (19)

Furthermore, col(u, v) is an eigenvector of Â associated with
λ ∈ spec(Â) if and only if col(u, 1√

ν
1⊗v) is an eigenvector

of A associated with λ.

Proof: From the proof of Theorem 2, we can see that

λγ ∈ spec(A+ γBC)

is an eigenvalue of A for the eigenvalue γ ∈ spec(Γ )\{γ0}.
Furthermore, we can verify that the equality of

A col(u, 1√
ν
1 ⊗ v) = λ col(u, 1√

ν
1 ⊗ v)

is equivalently rewritten as

Â col(u, v) = λ col(u, v).

This proves the claim.

The classification of the eigenvalues of A in (18) corre-
sponds to that of its eigenvectors in (17). From Lemma 3,
we see that the multiplicity of

λ ∈
∪

γ∈spec(Γ)\{γ0} spec(A+ γBC) (20)

coincides with that of γ ∈ spec(Γ ) \ {γ0}. For example, the
multiplicity of λ in (20) is found as ν − 1 for both inter-
connection matrices Γ in (3). As seen here, the existence of
symmetrical graph motives is also relevant to the multiplicity
of eigenvalues of A.

Note that Â in (19) satisfies

AP = PÂ, P TA = ÂP T (21)

where the projector P such that P TP = I is given by

P := diag
(
I, 1√

ν
1 ⊗ I

)
. (22)

Furthermore, we see that

B = PB̂, C = ĈP T, (23)

where B̂ := P TB and Ĉ := CP . On the basis of this
orthogonal projection, let us consider an aggregated model
of Σ in (1) given as

Σ̂ :

{
˙̂x = Âx̂+ B̂u, x̂(0) = P Tx0

ŷ = Ĉx̂.
(24)

This aggregated model is almost equivalent to the original
system in the following sense.

Theorem 4: For Σ in (1) with Γ being strictly symmetri-
cal, let Σ̂ be defined as in (24). Then

y(t) ≡ ŷ(t), t ≥ 0 (25)

for any x0 and u. In particular, if x0 ∈ imP , then

x(t) ≡ P x̂(t), t ≥ 0. (26)

Furthermore, Σ is detectable (stabilizable) if and only if Σ̂
is detectable (stabilizable) and A + γBC is stable for all
γ ∈ spec(Γ ) \ {γ0}.

Proof: For any x0 and u, we have

x(t) = exp(At)x0 +

∫ t

0

exp(A(t− τ))Bu(τ)dτ.

From the second relations in (21) and (23), we see that

CAk = ĈÂ
k
P T

for any natural number k. Thus (25) is proven by

C exp(At) = Ĉ exp(Ât)P T.

Furthermore, from the first relations in (21) and (23), it
follows that

AkB = PÂ
k
B̂,



which leads to

exp(At)B = P exp(Ât)B̂.

From x0 = PP Tx0 for x0 ∈ imP , we have (26).
Next we show the relation of detectability. From Theo-

rem 2 and Lemma 3, we see that the unobservable modes of
Σ eliminated by the aggregation of P are associated with
the eigenvalues of λ in (20). Thus the unobservable modes
are stable by the assumption that A + γBC is stable for
all γ ∈ spec(Γ ) \ {γ0}. The claim of stabilizability can be
shown by the same arguments of the dual space.

As shown in (25), the aggregated model Σ̂ has the same
initial value response as well as input-to-output character-
istics as those of the original system Σ. This stems from
the unobservability of symmetrical graph motives. On the
other hand, the property of state trajectories in (26) stems
from their uncontrollability. Both properties of (25) and
(26) are, in principle, essential for designing an observer-
based state feedback controller when utilizing the aggregated
model. This is because, unless (25) holds, there can be
discrepancy in the measurement output that is injected to
an observer; on the other hand, unless (26) holds, there can
be discrepancy in an observed state that is fedback to the
plant as a control input signal. As a relaxation of this, some
small approximation errors can be taken into account in a
robust control framework.

IV. NUMERICAL DEMONSTRATION

A. Second-Order Oscillator Network

Let us consider a network system depicted as the upper
graph in Fig. 3, which is composed of three large nodes
forming a chain and 30 small nodes forming a circle. In this
section, regarding each node as a second-order oscillator,
i.e., a mass-spring-damper system, we consider an output
regulation problem of the oscillator network. This kind of
second-order networks is called a (linearized) swing equation
in power systems control [11]. A similar loop-topology
model can be found in [19], [20], for which a stability
analysis is performed from a viewpoint of node coherence.

The system dynamics is given as follows. Let L denote the
unweighted symmetric graph Laplacian matrix compatible
with the upper graph in Fig. 3. In particular, the (1, 1)-block
of L is given as

L11 =

 1 −1 0
−1 2 −1
0 −1 31

 ,

which corresponds to the chain of large nodes. Using this
matrix, we obtain the (1, 1)-block of A in (2) as

A0 = I ⊗
[

0 1
0 − d

M

]
− L11 ⊗

[
0
1
M

] [
k 0

]
where M > 0 denotes a mass constant, d > 0 denotes a
damper constant, and k > 0 denotes a spring constant. In a
similar way, the (1, 2)-block of A is given as

H0(1
T ⊗ F ) = L12 ⊗

[
0
1
M

] [
k 0

]
,

Original system

Aggregated model

Fig. 3. Network structures of original system and aggregated model.

where L12 = col(0, 0, 1)1T. This leads to

H0 = col(0, 0, 1)⊗
[

0
1
M

]
, F =

[
k 0

]
.

The (2, 2)-block of L is given as the symmetric circulant
matrix

L22 = C30 + CT
30, C30 := I − (e1e

T
2 + · · ·+ e30e

T
1 ),

which corresponds to the circle of small nodes. In this
notation, the (2, 2)-block of A corresponding to the network
of symmetrical graph motives can be represented as

A =

[
0 1
0 − d

m

]
, B =

[
0
1
m

]
C =

[
δ k

]
, Γ = −L22,

(27)

where m > 0 denotes a mass constant for small nodes and
δ ≥ 0 denotes a coefficient of coupling among small nodes.
Then, in a way similar to the (1, 2)-block of A, the (2, 1)-
block can be represented by

F0 = colT(0, 0, 1)⊗
[
k 0

]
, H =

[
0
1
m

]
.

Finally, B and C in (2) are given with

B0 = I ⊗
[

0
1

]
, C0 = I ⊗

[
1 0

]
,

which imply that the input signals are injected to all large
nodes and the output signals are measured as their positions.
These system matrices lead to a 66-dimensional network
system Σ in (1). This system is semistable and has one zero
eigenvalue for any choice of constants. Furthermore, for any
constant input signal, it follows that

x∗
3 = x∗

4 = · · · = x∗
33,

where x∗
i denotes the steady state of the ith node. This

implies that all states of small nodes are to be synchronized
with that of the third large node. The values of x∗

1, x∗
2, and

x∗
3 can vary with the value of input signals.

B. Output Regulator Design Based on Aggregated Model
To design an output regulator for the network system

Σ, let us utilize the aggregated model Σ̂ in (24), whose
network structure is depicted as the lower graph in Fig. 3.
In particular, regarding Σ̂ as a plant to be controlled, we
consider designing an observer-based integrator in the form
of

Ξ :

{
˙̂ξ = Âξ̂ + B̂u+ Ĥ(ŷ − Ĉξ̂)

λ̇ = y∗ − Ĉξ̂,
(28)
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Fig. 4. Output regulation of network system with δ = 0.
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Fig. 5. Output regulation of network system with δ = 1.

where the first dynamics corresponds to the observer of Σ̂,
which is eight-dimensional, and the second is the three-
dimensional integrator for output regulation, steering the
system output to a reference signal denoted by y∗. Note that
the measurement signal ŷ in the observer can be equivalently
replaced with the system output y owing to the property of
(25). On the premise of the feedback control of

u = K̂ξ̂ +Kλ,

the output regulation

lim
t→∞

y = y∗

is achieved if the feedback gains are designed such that[
Â 0

−Ĉ 0

]
+

[
B̂
0

] [
K̂ K

]
, Â− ĤĈ (29)

are stable. Note that the four-dimensional observer works as
an average state observer of Σ, which attains

lim
t→∞


ξ̂1 − x1

ξ̂2 − x2

ξ̂3 − x3

ξ̂4 − 1√
30
(x4 + · · ·+ x33)

 = 0. (30)

This is owing to the property of (26).

C. Numerical Experiments

In the following, we set the system parameters as

M = 10, m = 1, k = 5, d = 0.1.

In this setting, we investigate two cases of δ = 0 and δ =
1 in (27). A set of stabilizing gains in (29) is found by
the standard LQR design technique. Furthermore, the output
reference signal is given as

y∗ = col(0, 0.5, 1),

which implies that the positions of three large nodes are to
be steered to 0, 0.5, and 1, respectively. The initial value of
Σ is given randomly.

For δ = 0, the trajectories of the network system Σ and its
average state observer in Ξ in (28) are shown in Fig. 4, where
the black thick lines correspond to the states of large nodes,
the red thin lines correspond to those of small nodes, and the
dotted lines correspond to those of the observer. The observer
state variable ξ̂4 is scaled by 1√

30
as being compatible with

(30). From this figure, we can see that the states of three large
nodes are steered to the target positions while the states of
the average state observer track the centroids of the system
states in the sense of (30).

For δ = 1, the resultant trajectories are shown in Fig. 5,
where the same notation as Fig. 4 is used. In this case, the
synchronization of small nodes becomes stronger than the
previous case because the value of δ works as a damper
coefficient for the reduction of discrepancy among small
nodes. These results demonstrate that the observer-based
state feedback controller design based on aggregated models
works well and it is reasonable for network systems having
a number of symmetrical graph motives, whose states are to
be synchronized with each other.

V. CONCLUDING REMARKS

In this paper, from a viewpoint of the symmetry of graph
motives, we have analyzed a sparse structure appearing
in eigenvectors, i.e., eigenmodes of network systems. Fur-
thermore, this eigenstructure analysis has been applied to
reduced order controller design based on aggregated models,
derived by aggregating symmetrical graph motives. It has
been found that the existence of symmetry, formulated as
the graph automorphism, makes a local state space associated
with the motives both uncontrollable and unobservable. An
aggregated model given by removing the redundant modes is
useful in designing a state feedback controller composed of
an average state observer, which tracks a kind of centroids
of the system states.

As a numerical demonstration of the aggregated controller
design, we have performed output regulation of a second-
order oscillator network. Our aggregated controller design
is based on the premise that the aggregated model is both
controllable and observable, whereas the original oscillator
network is supposed to be only stabilizable and detectable.
In particular, the original is supposed to involve a number
of particular uncontrollable and unobservable modes that



correspond to the disagreement with the average of the
state space associated with symmetrical graph motives. The
degree of stability of disagreement modes is relevant to
the coherence of symmetrical graph motives. From this
viewpoint, we see that making explicit use of the redundancy
from graph symmetry, e.g., sensor and actuator allocation
with explicit consideration of coherent states (cluster states),
can be a key insight into reasonably controlling large-scale
network systems. Introducing a notion of approximation in
the construction of aggregated models, in a way of [16], [17],
would be worth pursuing to make the aggregated controller
design method more practical.
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