JST-NSF-RCN WS on Distributed EMS

Fundamental Theory for Scalable Power Systems Control

Takayuki Ishizaki (Tokyo Institute of Technology)

Collaborative Works Overview

Large-Scale Power Systems Control

IEEJ EAST30 Model (stable system composed of 30 generators)

Stability? Better performance?

Problem Formulation: Retrofit Control

Subsystem of interest (model available)

$$\Sigma_1 : \begin{cases} \dot{x}_1 = \boldsymbol{A}_1 x_1 + \boldsymbol{L}_1 \gamma_2 + \boldsymbol{B}_1 u_1 \\ y_1 = \boldsymbol{C}_1 x_1 \end{cases}$$

Other subsystem(s) (model unavailable)

$$\Sigma_2 : \begin{cases} \dot{x}_2 = A_2 x_2 + L_2 \Gamma_1 x_1 \\ \gamma_2 = \Gamma_2 x_2 \end{cases}$$

Assumption: $\begin{cases} (i) \ y_1, \gamma_2 \text{ are measurable} \\ (ii) \ the preexisting system without \ \Pi_1 \text{ is stable} \end{cases}$

[Problem] Find a retrofit controller $\Pi_1 : u_1 = \mathcal{K}_1(y_1, \gamma_2)$ such that (a) the whole system is **kept stable** and (b) $||x_1||_{\mathcal{L}_2}$ is made small for any δ_0 .

- Hierarchical State-Space Expansion

Localized Controller Design

 $\begin{vmatrix} \dot{\xi}_1 \\ \dot{\xi}_2 \end{vmatrix} = \begin{vmatrix} \mathbf{A}_1 & \mathbf{L}_1 \Gamma_2 \\ \mathbf{L}_2 \mathbf{s} \mathbf{t}_1^{\mathbf{a}} \mathbf{b} \mathbf{a}_2 \end{vmatrix} \begin{vmatrix} \xi_1 \\ \xi_2 \end{vmatrix} + \begin{vmatrix} 0 \\ \mathbf{L}_2 \Gamma_1 \end{vmatrix} \hat{\xi}_1$

Hierarchical realization

model available!

$$\dot{\hat{\xi}}_1 = \boldsymbol{A}_1 \hat{\xi}_1 + \boldsymbol{B}_1 u_1$$

 $\neq y_1$

11

[Lemma] Design a controller $u_1 = K_1 C_1 \hat{\xi}_1$ such that $\dot{\hat{\xi}}_1 = (A_1 + B_1 K_1 C_1) \hat{\xi}_1$ is stable and $\|\hat{\xi}_1\|_{\mathcal{L}_2} \leq \mu_1$. constant Then the closed-loop system is stable and $\|\xi_1 + \hat{\xi}_1\|_{\mathcal{L}_2} \leq \alpha_1 \mu_1$, $\forall \delta_0$.

✓ Generalization to dynamical controller design is straightforward

How to implement $u_1 = K_1 C_1 \hat{\xi}_1$?

Controller Implementation

How to implement $u_1 = K_1 C_1 \hat{\xi}_1$??

$$C_1 \hat{\xi}_1(t) \equiv C_1 x_1(t) - C_1 \xi_1(t)$$

$$\Gamma_2 \xi_2(t) \equiv \Gamma_2 x_2(t) \equiv \gamma_2(t)$$

 $\dot{\xi}_1 = A_1 \xi_1 + L_1 \Gamma_2 \xi_2$ with $\xi_1(0) = 0$

$$\begin{array}{c} & \Sigma_{2} \\ & & & \\ & & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & & \\ & & \\ & & & \\$$

$$\hat{x}_1(t) \equiv \xi_1(t)$$

$$\iff \dot{\hat{x}}_1 = A_1 \hat{x}_1 + L_1 \gamma_2$$
 with $\hat{x}_1(0) = 0$

The closed-loop system with the retrofit controller

$$\Pi_{1}: \begin{cases} \dot{\hat{x}}_{1} = A_{1}\hat{x}_{1} + L_{1}\gamma_{2} & \text{Localizing} \\ u_{1} = K_{1}(y_{1} - C_{1}\hat{x}_{1}) & \text{compensator} \end{cases}$$

is internally stable and it satisfies $||x_1||_{\mathcal{L}_2} \leq \alpha_1 \mu_1, \forall \delta_0.$

Demonstration by Swing Equation Model

Scalable development of large-scale stable network systems based on distributed design and implementation of multiple retrofit controllers

Enhanced Damping of Wind Power Systems

Retrofit control of wind power plant can enhance damping performance

Concluding Remarks

- Retrofit control
 - Localization of controller design and implementation
 - Stability guarantee and control performance improvement
- Hierarchical state-space expansion
 - Redundant realization with cascade structure
 - Systematic analysis for stability and control performance

General Theory: T. Ishizaki, T. Sadamoto, J. Imura, H. Sandberg, K. H. Johansson: Retrofit Control: Localization of Controller Design and Implementation. *arXiv*

Power Systems Application: T. Sadamoto, A. Chakrabortty, T. Ishizaki, J. Imura: A Retrofitting-Based Supplementary Controller Design for Enhancing Damping Performance of Wind Power Systems. *ACC2017*

Thank you for your attention!