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In addition to the preexistent controller, we suppose that a
set of additional decentralized controllers is designed such that
each of them stabilizes the corresponding disjoint subsystem,
namely {

˙̂xi = Aix̂i +Biu′
i

y′i = Cix̂i.

In particular, we suppose that an additional dynamical map
K̂i(·) is designed such that

˙̂xi = Aix̂i +BiK̂i(Cix̂i) (27)

is stable. In the following, we denote the index set of sub-
systems to which the additional decentralized controllers are
implemented by L. Unless otherwise stated, we denote the ith
component of a stacked symbol by that with the subscript of
i, whereas the stacked version of a symbol is denoted by that
without the subscript of i, e.g., xi and x.

On the premise of the definition above, we consider the
input signal in the form of

u = w + ŵ, (28)

for which w and ŵ are to be constructed by cooperative use of
K(·) and K̂i(·) for i ∈ L. To realize a practical control system,
it is desirable that the local subsystem control is individually
managed by each of K̂i(·), while the entire system stability is
to be ensured by K(·). The simplest way to use both K(·) and
K̂i(·) for i ∈ L would be implementing them as

w = K(y), ŵi = K̂i(yi),

where ŵi is assumed to be zero for i ̸∈ L. However, this simple
implementation does not necessarily guarantee the stability of
the feedback system; thereby possibly inducing the instability
of the entire feedback system.

To prevent the induction of instability, let us consider
giving a compensation signal to each additional decentralized
controller. This is performed in a manner such that u in (28)
is constructed by

K : w = K(y) (29)

in conjunction with the combination of

K̂i : ŵi = K̂i(yi − ŷi),

Σ̂i : ŷi = Fi

(
wi, {γj}j∈Ni

) (30)

where ŵi is assumed to be zero for i ̸∈ L, and Fi(·)
denotes the dynamical map of a compensator Σ̂i. Note that
each compensator measures the interconnection output signals
from the neighborhood subsystems and the input signal from
the preexistent controller, i.e., {γj}j∈Ni and wi. Thus, the
combination of K̂i and Σ̂i in (30) can be regarded as a
distributed controller using the output signals of neighborhood
subsystems. In this formulation, we address the following
compensator design problem.

Problem 4.1: Consider an interconnected system Σ in (23),
each of whose subsystem is given by Σi in (22). Let a feedback
controller K in (29) be given such that (26) is stable, and let
K̂i in (30) be given such that (27) is stable for every i ∈ L.
Then, design a set of compensators Σ̂i for i ∈ L in the form
of (30) satisfying the following specifications.

Preexistent controller

Additional controllers
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connection

Fig. 4. Signal-flow diagram of hierarchical distributed control systems.

– The entire closed-loop system is stable under the feed-
back control of (28).

– The design scheme of each compensator Σ̂i is reliant only
on the corresponding subsystem model of Σi, and not on
the controller models of K and K̂i.

These specifications are satisfied when the stability of the
entire feedback system is guaranteed for any combination of K
and K̂i for i ∈ L such that (26) and (27) are stable. This type
of distributed control systems, referred to as a hierarchical
distributed control system, is reasonable in the sense that
each retrofit controller, which corresponds to the combination
of K̂i and Σ̂i in (30), can be designed and implemented
independently of the other controllers. The entire signal-flow
diagram is depicted as in Fig. 4.

B. Solution
On the basis of hierarchical state-space expansion, we give

a solution to Problem 4.1. The key to solving the problem
involves selecting the parameters in Lemma 3.2 as

Â = diag(Ai), P = I,

which lead to Γ̂ in (18) whose (i, j)-block is given by

Γ̂i,j =

{
αi,jLi, j ∈ Ni

0, otherwise.
(31)

Then, we have the following result.
Theorem 4.1: With the notation in Section IV, consider the

set of compensators each of whose dynamics is given by

Σ̂i :

{
˙̂xi = Aix̂i + Li

∑
j∈Ni

αi,jγj +Biwi

ŷi = Cix̂i
(32)

for i ∈ L. Then, the closed-loop system under the feedback
control of (28) is stable for any choice of an index set L and
any combination of feedback controllers K and K̂i such that
(26) and (27) are stable.

Proof: See the proof of Theorem 4.2, which includes
Theorem 4.1 as a special case.

In Theorem 4.1, the dynamics of Σ̂i can be regarded as an
observer for the interconnection output signals {γj}j∈Ni , to
which the input signal wi from the preexistent controller K
is injected. The compensator Σ̂i plays the role cancelling out
the effect of interferences with neighborhood subsystems and
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Large-Scale Power Systems Control
IEEJ	EAST30	Model (stable	system composed	of	30	generators)
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Controller	design	by	local	model?
Stability?		Better	performance?

parameters?

parameters?

parameters?

parameters?

parameters?

Complete	global	modeling	is	unrealistic!!

retrofit
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disturbance

4/13



Problem Formulation: Retrofit Control

Subsystem	of	interest (model	available)

Other	subsystem(s) (model	unavailable)

possibly	large	scale

"Problem# Find	a	retrofit	controller such	that
(a)	the	whole	system	is	kept	stable and		(b)															is	made small for	any

Assumption: (i)														are	measurable
(ii)		the	preexisting	system	without								is	stable



Hierarchical State-Space Expansion
Coupled	state	equation	of							and							a

stable (assumption)

state-space	expansion
to	cascade	realization

Hierarchical	realization -dim

stable stabilized	by

decoupled!

"Lemma#

and for	any

If and
then
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Localized Controller Design
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Hierarchical	realization model	available!

How	to	implement																								??

"Lemma# Design	a	controller																												such	that	

is	stable	and

Then	the	closed-loop	system	is	stable	and

Generalization	to	dynamical	controller	design	is	straightforward

constant



Controller Implementation
How	to	implement																										??

"Theorem#

Localizing
compensator

The	closed-loop	system	with	the	retrofit	controller

is	internally	stable	and	it	satisfies

with

with



Demonstration by Swing Equation Model
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Scalable	development	of	large-scale	stable	network	systems	based	on	
distributed	design	and	implementation of	multiple	retrofit	controllers
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Enhanced Damping of Wind Power Systems

20 MVA 40 MVA

Time (s)

re
la

tiv
e 

ge
n.

an
gl

es
 (d

eg
)

retrofitretrofit

Retrofit	control	of	wind	power	plant	can	enhance	damping	performance

Poorly	damped	as	wind	penetration	level	increases
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by	T.	Sadamoto,	A.	Chakrabortty



Retrofit	control
Localization	of	controller	design	and	implementation
Stability	guarantee	and	control	performance	improvement

Concluding Remarks

Hierarchical	state-space	expansion
Redundant	realization	with	cascade	structure
Systematic	analysis	for	stability	and	control	performance

Thank	you	for	your	attention!
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