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Abstract— In this paper, we design a bidding system for
a multiperiod electricity market in which market players
participate with power generators and energy storage resources.
For the bidding system design, we first develop a sequen-
tial procedure to determine a separate multidimensional bid
function, i.e., an ensemble of period-specific bid functions,
which enables to regard the multiperiod electricity market
as an ensemble of conventional period-specific electricity mar-
kets. This sequential determination also enables to construct
a distributed approximate scheme for multiperiod electricity
market clearing. Then, based on a basis transformation similar
to the Fourier transformation, we propose a bidding system
with explicit consideration of the pricing of energy shiftability.
It is shown that, in the situation where the optimal price
profile levels off due to high penetration of energy storage, the
distributed approximate scheme in the Fourier-like basis can
attain the optimal market clearing with the minimal social cost.
In addition, we numerically investigate the resultant deadweight
loss, i.e., an increase of social costs caused by approximation,
varying the levels of energy storage penetration.

I. INTRODUCTION

The development of a smart grid has been recognized as
one of key issues in addressing environmental and social con-
cerns; see [1], [2] for pedagogical overviews. In particular,
towards effective integration of dispatchable and renewable
power generation, the potential of energy storage has been
attracting international attention in smart grid community.
Along this trend, developing a multiperiod electricity mar-
ket, as opposed to a conventional period-specific electricity
market, is crucial for making use of the power shiftability of
energy storage resources and flexible loads. The significance
and difficulty of developing such an electricity market has
been discussed in the literature; see, e.g., Section 4.3 of [1].

With this background, we have formulated in [3] a multi-
period electricity market as a generalization of a conventional
period-specific electricity market. In this formulation, each
aggregator aims at making the highest profit by transacting
the prosumption (production and consumption) of energy
amounts at multiple timeslots, called a prosumption pro-
file. The prosumption profile is represented as a vector of
prosumption energy amounts. Each aggregator generates a
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prosumption profile based on available energy resources,
such as dispatchable power generation and energy storage.

Devising a clearing scheme for the multiperiod electricity
market is not straightforward due to the multidimensionality
(time dependence) of prosumption profiles; see Section III-
A for the details. For this issue, we have also proposed in
[3] a distributed market clearing scheme implemented as
an indirect communication among aggregators through an
independent system operator (ISO). This is developed based
on the premise that the optimal clearing price profile exactly
levels off. Even though we give a theoretical clarification
that such exact price levelling off is expected when the
penetration of energy storage is sufficiently high, devising
a market clearing scheme without assuming the exact price
levelling off is left as an open question there.

As generalization of the previous work, this paper develops
a more general bidding system for the multiperiod electricity
market that can attain prosumption balancing without assum-
ing the exact price levelling off. To this end, we discuss the
following items:

– We propose a sequential procedure to determine an
ensemble of conventional period-specific bid functions
for the multiperiod electricity market.

– Based on a basis transformation similar to the Fourier
transformation, we propose a bidding system that takes
explicit account of the pricing of energy shiftability.

Section IV in this paper is devoted to the first item.
The proposed sequential procedure can be seen as an ap-
proximation method to reduce an additively indecomposable
cost function to an additively decomposable function. In
general, the cost function of energy storage is not addi-
tively decomposable because it is temporally dependent.
The additively decomposable approximant leads to an en-
semble of period-specific bid functions, which enables to
regard the multiperiod electricity market as an ensemble of
conventional period-specific electricity markets. This also
enables to construct a bidding system implemented as a
distributed approximate scheme for market clearing. It should
be noted that this bidding system necessarily complies with
the constraint of prosumption profile balance even though it
may cause a degree of deadweight losses.

Section V is devoted to the second item. The transformed
basis, called the multiresolved basis, represents an ordered
basis compatible with temporal resolution (frequency) of
prosumption and price profiles. The corresponding bidding
system in this basis is regarded as a situation where a market
for the total prosumption amount on the day of interest opens
firstly, a market for shifting prosumption amounts between



the morning timeslots and the afternoon timeslots opens
secondly, and so force. This pricing of energy shiftability is
novel compared with the existing works [4]–[7]. In addition,
it is clarified that market clearing with the minimal social
cost, i.e., no deadweight loss, can be attained under high
penetration of energy storage.

The remainder of this paper is organized as follows. We
first overview the formulation of the multiperiod electricity
market in Section II. Then, in Section III, we formulate
a bidding system design problem. The main contributions
are provided in Sections IV and V, both of which include
illustrative numerical examples. Finally, concluding remarks
are provided in Section VI.

Notation: We denote the set of real values by R, the ith
column of the identity matrix by ei, the n-dimensional all-
ones vector by 1n, and the direct product of S1, . . . , Sn by

S1 × · · · × Sn =
∏

i∈{1,...,n} Si.

A function F : Rn → R is said to be convex if

F
(
(1− λ)x+ λx′) ≤ (1− λ)F (x) + λF (x′) (1)

for all λ ∈ (0, 1) and for every pair of x and x′ in the domain
such that the value of F is finite. In particular, F is said to
be strictly convex if (1) holds with the strict inequality unless
x = x′. A set-valued function f : Rn → Rn is said to be
monotone increasing over X if(

y − y′
)T

(x− x′) ≥ 0, ∀y ∈ f(x), y′ ∈ f(x′)

for every pair of x and x′ in X . An interval domain of
x ∈ Rn is denoted by [x] ⊂ Rn.

II. MULTIPERIOD ELECTRICITY MARKETS

A. Aggregator Model

First, we overview the multiperiod electricity market [3]
in which several aggregators participate. We provide a math-
ematical model of one aggregator who provides the pro-
sumption (production and consumption) of energy amounts
on the day of interest. Let T := {1, 2, . . . , n} denote the
set of timeslots on the day. The prosumption energy of an
aggregator at the tth timeslot can be described as

xt = gt − lt + ηoutδoutt − 1
ηin δ

in
t , t ∈ T (2)

where xt ∈ R denotes the resultant prosumption energy
to the grid, gt ∈ R+ denotes the power generation of
dispatchable generators, lt ∈ R+ denotes the load, and
δint ∈ R+ and δoutt ∈ R+ denote the battery charge and
discharge power. The positive constants ηin and ηout denote
the charge and discharge efficiency, respectively, each of
which takes a value in (0, 1]. Note that the sign of xt is
positive for outflow direction to the grid.

In the following, we denote the stacked vector of a symbol,
called a profile, by that without the subscript t. For example,
the prosumption profile x = (xt)t∈T represents the sequence
of prosumption amounts on the day. In the following, the load
profile l is supposed to be a given vector. On the other hand,
the dispatchable power generation profile g, and the battery

charge and discharge power profiles δin and δout are decision
variables. To realize a desired prosumption profile x, the
aggregator determines g and δ := (δin, δout) as complying
with the constraints of g ∈ G and δ ∈ D, which represents the
bounds for dispatchable power generation and the limitation
of inverter and battery capacities, respectively.

With respect to each prosumption profile x, we denote the
feasible subspace of the dispatchable power generation and
the battery charge and discharge profiles as

F(x) :=
{
(g, δ) ∈ G × D : (2) holds

}
. (3)

Furthermore, we denote the set of realizable prosumption
profiles as

X :=
{
x ∈ Rn : F(x) ̸= ∅

}
, (4)

which is convex if G and D are convex. The cost functions
of dispatchable power generation and battery charge and
discharge are denoted as

G : G → R, D : D → R. (5)

As shown in [3], if G and D are both convex over G and D,
respectively, then the prosumption cost function defined by

F (x) := min
(g,δ)∈F(x)

{
G(g) +D(δ)

}
(6)

is convex over X . The value of F (x) represents the minimum
cost to realize a prosumption profile x. Note that the closed
form of F cannot be written down in general. Furthermore, F
is generally not strictly convex even though it is necessarily
convex if G and D are convex. This is due to the fact that the
battery charge and discharge cost function D is not strictly
convex because energy storage has the shiftability of energy
amounts among timeslots.

B. Derivation of Multidimensional Bid Functions

In this subsection, we discuss a bid function compatible
with the multiperiod electricity market. Let λ ∈ [λ] denote an
n-dimensional price profile for prosumption profile transac-
tion, which corresponds to the sequence of prices on the day
of interest. The profit function in transacting a prosumption
profile x is defined as

J(x;λ) := λTx− F (x), (7)

where λTx represents the total income by transacting the
prosumption profile. On the basis of this profit function, the
aggregator can determine a set-valued function given as

x(λ) :=
{
x ∈ X : J(x;λ) ≥ J(x′;λ), ∀x′ ∈ X

}
, (8)

which corresponds to the set of x attaining the maximum of
the profit function J(·;λ) with a fixed price profile λ. As
shown in [3], x : Rn → Rn in (8) is monotone increasing if
F is convex. Based on this fact, we introduce the following
notion of multidimensional bid functions.

Definition 1: A set-valued function x : Rn → Rn is said
to be a multidimensional bid function with respect to a price
profile interval [λ] if it is monotone increasing over [λ].



The domain and image of a multidimensional bid func-
tion are both multidimensional. This reflects the fact that
prosumption amount transaction is performed at multiple
timeslots. Note that the element with respect to the tth
timeslot, i.e., eTt x : Rn → R, is not a conventional period-
specific bid function, because it is generally a function of the
multidimensional price profile. Note that the graph of eTt x is
depicted as a multidimensional hyperplane. It is not tractable
in the conventional bidding system because one-dimensional
bidding curves can only be considered there.

C. Separability of Multidimensional Bid Functions

For multidimensional bid functions, the following separa-
tion will be discussed below.

Definition 2: A multidimensional bid function x : Rn →
Rn is said to be separate over a price profile interval [λ] if

eTt x(λ) = xt(λt), ∀t ∈ T (9)

where xt : R → R is a bid function with respect to [λt].
This notion of separation represents the property that each

element of a multidimensional bid function is independent
from each other. Thus, a separate multidimensional bid func-
tion can be regarded as a simple ensemble of conventional
period-specific bid functions. In addition, another notion of
separation is introduced for convex functions as follows.

Definition 3: A convex function F : Rn → R is said to
be separate over an interval domain [x] if

F (x) =
∑

t∈T Ft(xt) (10)

for an ensemble of Ft : R → R being convex over [xt].
This corresponds to the additive decomposability of cost

functions. Definitions 2 and 3 have a clear link as follows.
Lemma 1: Consider an aggregator in Section II-A. Then,

the multidimensional bid function x : Rn → Rn in (8)
is separate over a price profile interval if and only if the
prosumption cost function F in (6) is separate over an
interval domain in the realizable prosumption profile set X
in (4).

Proof: We use the facts from convex analysis theory
shown in Appendix. The definition of the conjugate implies
supx∈X J(x;λ) = F (λ) for J in (7). Furthermore, the first
derivative condition for the supremum leads to λ ∈ ∂F (x).
Because of the equivalence between the conjugates, we see
that x(λ) = ∂F (λ). According to the relation of the subdif-
ferential for separate functions shown in Corollary 31.5.2 of
[8], the separation of x over a domain [λ] is rephrased as

x(λ) = ∂
(∑

t∈T F t(λt)
)
, λ ∈ [λ] (11)

for an ensemble of F t : R → R being convex over [λt]. This
means the separation of F over [λ], which is equivalent to
the separation of F over some [x]. This proves the claim.

Lemma 1 shows that a multidimensional bid function
x is separate over a price interval [λ], i.e., the bidding
curve can be depicted as a one-dimensional curve, only
over a domain [x] where a prosumption cost function F is

separate. Note, however, that this assumption of separation
does not make sense when an aggregator has energy storage
resources, which provides an ability to shift prosumption
amounts. From this viewpoint, we see that the clearing of
the multiperiod electricity market is not straightforward with
a conventional period-specific bidding system. One approach
for systematic market clearing is to devise a method to reduce
the multidimensional bid function x in (8) to a separate
approximant. In Section IV-A below, we will develop such an
approximation method for multidimensional bid functions.

III. PROBLEM FORMULATION

A. Remarks on Multiperiod Electricity Market Clearing

In this section, with slight abuse of notation, we denote
a symbol of the αth aggregator by that with the subscript
α, e.g., xα and xα. Furthermore, we denote the tuple of a
symbol indexed by α ∈ A by that with the subscript A, e.g.,
xA := (xα)α∈A. As shown in [3], if at least one prosumption
cost function Fα is smooth, then there exists the unique price
profile, denoted as λ∗, such that

∃x∗
A ∈

∏
α∈A xα(λ

∗) s.t.
∑

α∈A x∗
α = 0. (12)

In the rest of this paper, we call λ∗ the optimal clearing
price profile and we assume that at least one Fα is smooth
for simplicity.

The optimal clearing of the multiperiod electricity market
can be rephrased as finding λ∗ and x∗

A that attain the
prosumption profile balance in (12). This is equivalent to
finding a solution to the convex program of

min
xA

∑
α∈A Fα(xα) s.t.

∑
α∈A xα = 0, (13)

whose Lagrange relaxation is given by

max
λ

min
xA

∑
α∈A

{
Fα(xα)− λTxα

}
. (14)

As seen here, the Lagrange multiplier appears as the price
profile λ in (7).

Note that the ISO may be able to solve the convex program
of (13) or (14) in a centralized manner. However, this is
based on the premise that every aggregator submits the full
information of the prosumption cost function Fα in (6). Even
though this type of centralized optimization is carried out
in the PJM market [10], such a centralized scheme is not
necessarily desirable from the viewpoint of computational
complexity and privacy of competitive aggregators. There-
fore, it is indispensable to design an appropriate bidding
system for the multiperiod electricity market, regarded as
a distributed solution scheme for the convex program.

As another approach, dynamic pricing methods can be
found in the literature [5], [7]. This approach is mainly
based on the dual ascent algorithm to solve the convex
program in (13), or equivalently (14). Even though such an
algorithm can be implemented in a distributed manner, the
update of each primal variable assumes the strict convexity
of the prosumption cost function Fα. In fact, as mentioned
in the end of Section II-A, Fα does not generally satisfy the
assumption of the strict convexity.



B. Bidding System Design Problem

For convenience of discussion below, let us introduce the
following terminology.

Definition 4: A tuple of prosumption profiles denoted as
x̂A is said to be balancing if

∑
α∈A x̂α = 0.

In the following, we suppose that each aggregator sub-
mits the bidding curves of a separate multidimensional bid
function, i.e., an ensemble of conventional period-specific
bidding curves, to the ISO. Under this supposition, the
ISO can determine a clearing price profile as well as a
tuple of balancing prosumption profiles. More specifically,
let x̂α : Rn → Rn denote a separate multidimensional bid
function of the αth aggregator, which can be regarded as an
approximant of the original multidimensional bid function
xα given as in (8). Then, there can be uniquely found an
approximate clearing price profile, denoted as λ̂, such that

x̂A ∈
∏

α∈A x̂α(λ̂) (15)

is balancing if
∑

α∈A x̂α is strictly monotone increasing.
To evaluate quality of a bidding system, we define the

following measure for balancing prosumption profiles.

Definition 5: Let x̂A be a tuple of balancing prosumption
profiles. A deadweight loss with respect to x̂A is defined by

∆(x̂A) :=
∑

α∈A Fα(x̂α)− F ∗ (16)

where F ∗ denotes the minimum social cost of the convex
program in (13).

By definition, we clearly see that the deadweight loss is
nonnegative and it becomes zero for the optimal solution of
the convex program in (13). On the basis of arguments above,
we formulate a bidding system design problem as follows.

Problem: Consider a set of aggregators in Section II-A.
Devise a market clearing scheme that can find a tuple of
prosumption profiles and a clearing price profile, denoted as
x̂A and λ̂, such that the following requirements are satisfied.

– Each aggregator submits an ensemble of bidding curves
associated with a separate multidimensional bid func-
tion x̂α to the ISO.

– The ISO determines x̂A and λ̂ such that x̂A is balancing
and (15) holds.

– The deadweight loss with respect to x̂A is small enough.

The major difficulty in this problem is how to determine
a good separate multidimensional bid function x̂α such that
the resultant deadweight loss is small enough. In the rest of
this paper, we will address this issue.

IV. SEQUENTIAL DETERMINATION OF SEPARATE
MULTIDIMENSIONAL BID FUNCTIONS

A. Bid Function Determination at Specific Timeslot

In this subsection, we propose a sequential procedure for
deriving a separate multidimensional bid function, denoted
as x̂, which corresponds to an approximant of the original
multidimensional bid function x in (8). For simplicity of
notation, we drop the subscript α as long as our attention can

be focused on one aggregator without distinction of them.
With the notation of stacked vectors like

xi:j := (xi, xi+1, . . . , xj)
T,

where the subscript is associated with timeslots, we sup-
pose that a price subprofile λ̂1:t−1 as well as a transacted
prosumption subprofile x̂1:t−1 have been determined by the
ISO for the first to (t− 1)th timeslots. Our objective here is
to determine a period-specific bid function x̂t : R → R for
the tth timeslot, based on the premise that λ̂1:t−1 and x̂1:t−1

have been determined in advance. Without loss of generality,
they are assumed to be empties when t = 1.

To formulate a profit function with respect to the tth
timeslot, let us consider a cost function in the form of

ft(xt) := − min
λt+1:n

max
xt+1:n

{
λT
t+1:nxt+1:n − F (x̂1:t−1, xt:n)

}
(17)

where the minimization and maximization are subject to

λt+1:n ∈ [λ̂t+1:n],

t−1∑
τ=1

eτ x̂τ +

n∑
τ=t

eτxτ ∈ X . (18)

In this program, the interval [λ̂t+1:n], called a price pre-
diction interval, is determined by the aggregator of interest.
Over the feasible domain of ft, denoted by [x̂t], we consider
a period-specific profit function Ĵt defined as

Ĵt(xt;λt) := λtxt − ft(xt). (19)

Then, we obtain the following period-specific bid function.
Lemma 2: Consider an aggregator in Section II-A and

define the sequential profit function Ĵt as in (19). For any
price prediction interval [λ̂t+1:n] and any constants λ̂1:t−1

and x̂1:t−1, the set-valued function

x̂t(λt) :=
{
xt : Ĵt(xt;λt) ≥ Ĵt(x

′
t;λt), ∀x′

t ∈ [x̂t]
}

(21)

is a bid function with respect to any price interval [λt].
Proof: To prove the claim, we show that x̂t is monotone

increasing. First, we suppose that ft in (17) is a convex
function. Under this supposition, x̂t(λt) = ∂f t(λt) holds
where f t denotes the conjugate of ft. Thus, the monotonicity
of the subdifferential proves the monotonicity of x̂t.

Let us show the convexity of ft. We notice that

F t(xt, λt+1:n) := max
xt+1:n

{
λT
t+1:nxt+1:n − F (x̂1:t−1, xt:n)

}
corresponds to the partial conjugate of the convex function
F (x̂1:t−1, xt, ·). As shown in Theorem 33.1 of [8], F t is
a saddle function, i.e., it is concave with respect to the first
variable and convex with respect to the second. Furthermore,
ft is given as the maximum of the collection of convex
functions −F t(·, λt+1:n), which is shown to be convex; see
Theorem 5.5 of [8]. Thus, ft is convex.

On the basis of the bid function x̂t in (21), each aggregator
can depict own period-specific bidding curve for the tth
timeslot market. By definition, provided that the feasible
domain [x̂t] is nonempty, so is [x̂t+1] for any x̂t ∈ x̂t(λ̂t)
with a clearing price λ̂t ∈ [λt]. Thus, according to this



sequential determination of x̂t and λ̂t, each aggregator can
determine a separate approximant x̂ : Rn → Rn as the
ensemble of x̂t.

B. Multiperiod Electricity Market Clearing

For a set of aggregators, let x̂α : Rn → Rn denote the
separate multidimensional bid function of the αth aggregator
given as in Section IV-A. By aggregating all bidding curves,
the ISO can determine a tuple of prosumption profiles and
a clearing price profile, denoted as x̂A and λ̂, such that x̂A
is balancing and (15) holds. This gives one solution to the
bidding system design problem in Section III-B.

Let us discuss the resultant deadweight loss, i.e., the
quality of the bidding system. In fact, we can guarantee the
optimality at least when every multidimensional bid function
xα is originally separate. This is formally stated as follows.

Theorem 1: Consider a set of aggregators in Section II-A
and let x̂α : Rn → Rn denote the separate multidimensional
bid function of the αth aggregator given as in (21). Assume
that every multidimensional bid function xα in (8) is separate
over a price profile interval [λ]. If λ∗ ∈ [λ] for the optimal
price profile λ∗ in (12), then the clearing price profile λ̂ such
that x̂A in (15) is balancing is identical to λ∗. Furthermore,
the deadweight loss with respect to x̂A is zero.

Proof: Let us focus our attention on one aggregator and
we drop the subscript α without distinction of aggregators.
From the assumption that x is separate over [λ], we see that
F is separate over some domain [x] as shown in Lemma 1.
When F is represented as in (10), ft in (17) is identical to
Ft up to an additive constant. Thus, x̂t in (21) is equal to
∂F t. This is also equal to the tth element of x represented
as in (11). Therefore, provided that the multidimensional bid
functions of all aggregators are separate and λ∗

t ∈ [λt], the
optimal solutions are to be found, namely λ̂t = λ∗

t and x̂t =
x∗
t , which satisfy x∗

t ∈ ∂F t(λ
∗
t ). This proves the claim.

Theorem 1 can guarantee the optimality of market clearing
under the assumption that every xα is originally separate.
However, such an assumption may not make sense especially
when an aggregator has large energy storage resources. This
will be numerically demonstrated in Section IV-C below.

C. Numerical Example

We consider the multiperiod electricity market consisting
of three aggregators. On the day of interest, the transacted
prosumption amounts are determined at every 90 minutes,
i.e., the dimension of prosumption profiles is n = 16.
The first and second aggregators are supposed to manage
five thousand residential consumers with energy storage
resources, formulated as

xα = −lα + ηoutα δoutα − 1
ηin
α
δinα , α ∈ {1, 2}.

Furthermore, the third aggregator manages nine generators,
formulated as x3 =

∑9
i=1 gi, where the subscript i represents

the label of generators. In our simulation, we set ηout1 =
ηin2 = 0.95 and ηout2 = ηin2 = 0.94. The inverter and battery
capacities are supposed to be 3.5 [kW] and 10.5 [kWh],
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Fig. 1. (a) Load profiles of aggregators. (b) The resultant social costs
versus levels of energy storage penetration.

respectively, for one residential consumer. The load profiles
l1 and l2 are plotted in Fig. 1(a).

The fuel cost function of thermal generation is supposed
to be a linear function of

G3(g1, . . . , g9) =
∑9

i=1 3i× 1T
16gi, (22)

which is convex but not strictly convex. The lower and upper
bounds of gi are given as

g1, g2, g3 ∈ [0, 1500× 1n], g4, g5, g6 ∈ [0, 1000× 1n],
g7, g8, g9 ∈ [0, 800× 1n].

The battery charge and discharge cost functions D1 and
D2 are given as follows. Let s0α denote the initial amount of
stored energy, i.e., the state of charge, which is defined as the
deviation from a neutral value. Then, the amount of stored
energy deviation at the termination time is represented as

sα(δα) := s0α + 1T
n(δ

in
α − δoutα ). (23)

In our simulation, we set s01 = s02 = 0. It is reasonable to
suppose that a higher level of final stored energy is more
preferable than a lower level, and vice versa. To take into
account this aspect, each aggregator is supposed to assess
the value of final stored energy by

Dα(δα) := −d (sα(δα))

where d : R → R is a concave function given as

d(s) :=


a4(s− s) + a3s, s ≤ s,

a3s, 0 ≤ s < s,
a2s, s ≤ s < 0,

a1(s− s) + a2s, s < s.

We set a1 = 20, a2 = 10, a3 = 6.7, a4 = 3.3, s = −1.31,
and s = 1.31. In this setting, Dα is also convex but not
strictly convex. Then, we obtain a convex prosumption cost
function Fα for each aggregator. We give the price prediction
interval [λ̂2:16] in (18) as the multidimensional interval from
10 to 23 [JPY/kWh].

Varying the levels of energy storage penetration, we calcu-
late the resultant deadweight loss ∆(x̂A) in (16) when using
the separate approximants x̂α derived as in Section IV-A. In
Fig. 1(b), the resultant social costs

∑
α∈A Fα(x̂α) and F ∗

are plotted by the blue solid line with squares and the red
dotted line with circles, respectively. The difference between
them represents the deadweight loss and the horizontal axis
represents the percentage of residential consumers having
energy storage. From this figure, we see that the deadweight
loss is zero at least when there is no energy storage, i.e., the
0% penetration level. This is because x1, x2, and x3 in this
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Fig. 2. Price profiles, dispatchable power generation profiles, charge and discharge power profiles, and stored energy profiles in 10% penetration level.

case are all separate, i.e., x̂α is identical to xα as shown in
Theorem 1.

However, we further see that the deadweight loss as well as
the resultant social cost increase as the level of energy storage
penetration increases. This implies that the approximation of
xα by x̂α is not good enough when the level of energy
storage penetration is high. In fact, as shown in Fig. 2, the
resultant profiles of clearing prices and decision variables
(the blue solid lines) have relatively large discrepancy from
the optimal ones (the red dotted lines) even in the case of
the 10% penetration level.

V. BIDDING SYSTEM FOR ENERGY SHIFTABILITY

A. Aggregator Model in Multiresolved Basis

In the rest of this paper, for simplicity of discussion, we
suppose that n is a power of 2, i.e., n = 2N for a natural
number N . Under this supposition, every index h ∈ H with

H := {0, 1, . . . , 2N − 1}

can be represented in the binary form of

h =
∑

j∈J σ
(j)
h 2j , J := {0, 1, . . . , N − 1}

where each σ
(j)
h takes a binary value of 0 or 1. As being

compatible with this binary representation, we consider a
vector of coordinates given as

uh := p
(0)
h ⊗ p

(1)
h ⊗ · · · ⊗ p

(N−1)
h , h ∈ H

where each p
(j)
h is the binary vector of

p
(j)
h :=

1√
2

(
1− σ

(j)
h

)(
1
1

)
+

1√
2
σ
(j)
h

(
1
−1

)
.

The system of these coordinates forms an orthonormal basis
denoted by {uh}h∈H, which we call a multiresolved basis.

Note that uh with a small number of h corresponds to a
basis of low temporal resolution. On the other hand, uh with
a large number of h corresponds to a basis of high temporal
resolution. For example,

u0 =
(

1√
2

)N

12N , u1 =
(

1√
2

)N
(

12N−1

−12N−1

)
(24)

correspond to the zero (lowest) frequency coordinate and the
second lowest frequency coordinate, respectively. The basis
transformation can be regarded as a bijection between the
time domain and a frequency-like domain.

On the premise of the multiresolved basis, we consider
formulating a transformed multiperiod electricity market
with regard to energy shiftability. To this end, we represent
a prosumption profile as x =

∑
h∈H whuh where wh

denotes the hth component in the multiresolved basis. This
is rewritten as x = Uw where w := (wh)h∈H denotes the
stacked component vector and

U := [u0, u1, . . . , u2N−1] (25)

denotes the unitary matrix associated with the multiresolved
basis. With this basis transformation, we can define an
alternative cost function H : R2N→ R defined as

H(w) := F (Uw). (26)

This transformed cost function represents the prosumption
cost in the multiresolved basis. For example, its partial
derivative with respect to w0 represents the change rate of
costs for increasing the total prosumption amount on the
day of interest, and its partial derivative with respect to w1

represents the change rate of costs for shifting prosumption
amounts from the latter half (afternoon) timeslots towards
the former half (morning) timeslots. They correspond to the
coordinates u0 and u1 in (24).

B. Derivation of Separate Multidimensional Bid Functions

Consider the basis transformation of the price profile as
λ = Uη, where η denotes the transformed price profile in
the multiresolved basis. Note that each price ηh is associated
with the corresponding coordinate uh. Then, the transformed
profit function, which is equivalent to J in (7), is defined as

K(w; η) := ηTw −H(w). (27)

On the basis of this profit function, we can define the
multidimensional bid function

w(η) :=
{
w : K(w; η) ≥ K(w′; η), ∀w′ ∈ UTX

}
, (28)

which is given in the same manner as x in (8).
Let us consider deriving a separate approximant of the

multidimensional bid function w according to the sequential
procedure in Section IV-A. In the same manner as that for x̂t

in (21), we can derive a bid function ŵh : R → R associated
with the hth resolution market. More specifically, under the
supposition that a price prediction interval [η̂h+1:2N−1] is
given and constants ŵ0:h−1 and η̂0:h−1 are determined, we
define a convex function gh : R → R in the same manner as
ft in (17). Then, for the hth resolution profit function

K̂h(wh; ηh) := ηhwh − gh(wh), (29)

we obtain the bid function as

ŵh(ηh) :=
{
wh :K̂h(wh; ηh)≥K̂h(w

′
h; ηh), ∀w′

h∈ [ŵh]
}
,

(30)
whose derivation is similar to that of (21).



Finally, we obtain a separate approximant ŵ : R2N→ R2N

as the ensemble of ŵh. Note that the original multidimen-
sional bid functions x and w are equivalent up to the basis
transformation, while the separate approximants x̂ and ŵ are
not equivalent. Thus, the resultant values of deadweight loss
are different in general.

C. Energy Shiftability Market Clearing
Consider a set of aggregators. As shown in [3], the optimal

prosumption profile x∗
α in (12) of at least one aggregator is

shiftable, i.e., the directional derivative [8] of Fα at x∗
α with

respect to ei − ej is zero for every pair (i, j) ∈ T × T , if
and only if the optimal price profile λ∗ in (12) lies in the
image of u0 in (24), i.e., λ∗

1 = · · · = λ∗
n. This implies that the

optimal clearing price profile levels off due to the shiftability
of prosumption profiles. Note that this price leveling off is
expected when the level of energy storage penetration is
sufficiently high, because energy storage can be seen as a
resource having a larger shiftable domain of prosumption
profiles. The following theorem shows that, under such
a situation of price leveling off, the transformed bidding
system in Section V-B can realize the optimal clearing of
the multiperiod electricity market.

Theorem 2: Consider a set of aggregators in Section II-A.
For a price prediction interval such that 0 ∈ [η̂1:2N−1] holds,
let ŵα : R2N→ R2N denote the separate multidimensional
bid function of the αth aggregator given as in (30). Then,
with regard to the clearing price profile η̂ such that

x̂A = (Uŵα)α∈A, ŵA ∈
∏

α∈A ŵα(η̂) (31)

is balancing, the optimal price profile λ∗ in (12) is given by
λ∗ = η̂0u0 if and only if η̂ satisfies

η̂1 = η̂2 = · · · = η̂2N−1 = 0. (32)

Furthermore, the deadweight loss with respect to x̂A is zero.
Proof: For simplicity of notation, we drop the subscript

α as long as we can focus on one aggregator. We first prove
that (32) is equivalent to

0 ∈ ∂Ĥh(ŵh), ∀h ∈ {h1, h2, . . . , h̄} (33)

where h̄ := 2N −1 and Ĥh(wh) := H(ŵ0:h−1, wh, ŵh+1:h̄),
provided that ŵ ∈ ŵ(η̂) holds as in (31). This proof is done
by induction in the descending order. Initially, we have

K̂h̄(wh̄; ηh̄) = wh̄ηh̄ −H(ŵ0:h̄−1, wh̄)

for K̂h in (29). Owing to the convexity of H(ŵ0:h̄−1, ·), the
condition of η̂h̄ = 0 is equivalent to the fact that the h̄th
element ŵh̄ maximizes K̂h̄(·; 0), namely 0 ∈ ∂Ĥh(ŵh) for
h = h̄. Next, supposing that

0 ∈ ∂Ĥh(ŵh), ∀h ∈ {h̄− θ + 1, . . . , h̄} (34)

for θ = i, we show that (34) holds again for θ = i+1. Note
that η̂h̄−i = 0 is equivalent to the fact that ŵh̄−i satisfies
0 ∈ ∂gh̄−i(ŵh̄−i) where

gh̄−i(wh̄−i) = − min
ηh̄−i+1:h̄

max
wh̄−i+1:h̄

{
ηTh̄−i+1:h̄wh̄−i+1:h̄

−H(ŵ0:h̄−i−1, wh̄−i, wh̄−i+1:h̄)
}
.

(35)

Furthermore, provided that the price prediction interval
[η̂h̄−i+1:h̄], which is the domain of the minimization with
respect to ηh̄−i+1:h̄ in (35), involves 0 as a feasible element,
the convex program inside gh̄−i(ŵh̄−i) has the solution of

ηh̄−i+1:h̄ = 0, wh̄−i+1:h̄ = ŵh̄−i+1:h̄.

This is ensured by (34) with θ = i. Therefore, we see that

0 ∈ ∂gh̄−i(ŵh̄−i) = ∂Ĥh(ŵh),

which proves (34) for θ = i + 1. Hence, the equivalence
between (32) and (33) is proven.

Notice that the optimal multidimensional bid function w
in (28) is given as w = ∂H , where H denotes the conjugate
of H . For the arguments below, let us confine our attention
on the domain of η ∈ ime0, where we denote the unit vector
associated with η0 by e0. Then, for any ŵ0 ∈ eT0 ∂H(e0η0),
it follows that

w(e0η0) =

(
eT0 ∂H(e0η0)
∂H(ŵ0, 0)

)
where H(ŵ0, ·) denotes the conjugate of H(ŵ0, ·). In the
following, we show that

w(e0η0) =
(
ŵ0(η0), ŵ1(0), . . . , ŵh̄(0)

)T
. (36)

Note that the minimization in (35) has the solution being
equal to zero if (32) or equivalently (33) holds. Thus, without
loss of generality, we can assume that [η̂1:h̄] = 0 for its
feasible domain. This reduces the formula of K̂h in (29) as

K̂h(wh; ηh) = whηh − max
wh+1:h̄

{−H(ŵ0:h−1, wh:h̄)}. (37)

Let us first consider the case of h = 0. From the reduced
formula, we see that ŵ0(e0η0), which is given as the set of
w0 attaining the maximum of K̂0(·; e0η0), can be expressed
as ŵ0(η0) = eT0 ∂H(e0η0), which proves the identity of the
zeroth element of (36).

On the other hand, because the maximization in (37) has
a solution of ŵh+1:h̄, ŵh(0) for each h ≥ 1 is given as the
set of wh such that 0 ∈ ∂Hh(wh). This is satisfied for ŵh

because of (33). Therefore, stacking them for all h ≥ 1, we
have (ŵ1(0), . . . , ŵh̄(0))

T = ∂H(ŵ0, 0), which proves the
identity of the remaining elements of (36).

Let us denote the left-hand side of (36) associated with the
αth aggregator by wα(e0η0). In this notation, the balance
equation in (31) with (32) implies that

∃w∗
A ∈

∏
α∈A wα(e0η̂0) s.t.

∑
α∈A w∗

α = 0. (38)

Therefore, from the uniqueness of the optimal price profile,
we see that η∗ satisfying 0 ∈

∑
α∈A wα(η

∗) is given by
η∗ = e0η̂0. Hence, λ∗ = η̂0u0 is proven. The deadweight
loss of x̂A is zero because (38) is equivalent to (12).

Theorem 2 implies that, in a situation where the optimal
price profile λ∗ levels off, the optimal price profile is
obtained as λ∗

1 = · · · = λ∗
n = ( 1√

2
)N η̂0, where η̂0 denotes

the clearing price for the total prosumption on the day. As
discussed in [3], such price levelling off can be expected in
high penetration of energy storage. From this viewpoint, the



5

10

15

20

P
ri

ce
 [

JP
Y

/k
W

h
]

0

500

1000

1500

T
h
er

m
al

 g
en

er
at

io
n
 [

k
W

]

-2000

-1000

0

1000

2000

C
h
ar

g
e/

d
is

ch
ar

g
e 

p
o
w

er
 [

k
W

]

-4000

-2000

0

2000

4000

S
to

re
d
 e

n
er

g
y
 [

k
W

h
]

10 15 20 25
Time [h]

50 10 15 20 25
Time [h]

50 10 15 20 25
Time [h]

50 10 15 20 25
Time [h]

50

Agg. 1

Agg. 2

Optimal price

Approx. price

Fig. 3. Price profiles, dispatchable power generation profiles, charge and discharge power profiles, and stored energy profiles in 10% penetration level.

sequential determination of separate multiperiod bid func-
tions in the multiresolved basis can work well for clearing
the multiperiod electricity market under high energy storage
penetration. Note that the sequential determination does not
work well in the original time basis as demonstrated in
Section IV-C.

D. Numerical Example

Consider the same setting as that in Section IV-C. We give
the price prediction interval [η̂1:15] as the multidimensional
interval from −9.5 to 9.1. Varying the levels of energy
storage penetration, we calculate the resultant deadweight
loss for the transformed bidding system in Section V-B.
The resultant social cost

∑
α∈A Hα(ŵα) is over plotted in

Fig. 1(b) by the green solid line with diamonds. From this
figure, we see that the resultant social cost decreases as
the penetration level increases. Furthermore, the deadweight
loss, represented as the difference from the red dotted line
with circles, is smaller than the deadweight loss in Sec-
tion IV-C. In fact, in the case of no energy storage penetra-
tion, i.e., the 0% penetration level, the resultant deadweight
loss is shown to be zero because the separate approximant
ŵα is identical to the original multidimensional bid function
wα for every α ∈ {1, 2, 3}. In addition, as expected from
Theorem 2, the deadweight loss becomes smaller as the
penetration level becomes higher. For reference, the resultant
profiles of clearing prices and decision variables in the case
of the 10% penetration level are plotted in Fig. 3, where we
use the same legends as those in Fig 2. From these results,
we see that the distributed approximate scheme for market
clearing has good compatibility with the bidding system in
the multiresolved basis.

VI. CONCLUDING REMARKS

In this paper, we have designed a bidding system for a
multiperiod electricity market with consideration of the pric-
ing of the shiftability of energy storage. More specifically,
we have first developed a distributed approximate scheme
for multiperiod electricity market clearing. Then, based on
a basis transformation similar to the Fourier transformation,
we propose a bidding system with explicit consideration of
the pricing of energy shiftability. It has been theoretically
and numerically shown that the distributed approximate
scheme has good compatibility with the bidding system
in the Fourier-like basis. Generalization to the integration
of renewable power generation, which may have a steep
fluctuation, is a meaningful future work to pursue.
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APPENDIX

We overview several facts from convex analysis theory [8].
The conjugate of a convex function F is defined by

F (λ) := sup
x∈dom F

{
λTx− F (x)

}
, (39)

where domF denotes the effective domain of F . It is known
that F is convex and the conjugate of F coincides with F
as long as F is convex. Furthermore, the strict convexity of
F is equivalent to the smoothness of F . The transformation
in (39) is called the Legendre-Fenchel transformation.

The subdifferential of a convex function F is defined by

∂F (x) :={λ : F (x′)≥F (x) + λT(x′ − x), ∀x′∈ domF},

which is a set-valued function with a convex image. Corol-
lary 31.5.2 of [8] shows that ∂F : Rn → Rn is monotone
increasing if F is convex. In particular, it is shown to be
strictly monotone increasing if F is strictly convex; see
Theorem 2.1 in [9]. Furthermore, x ∈ ∂F (λ) and λ ∈ ∂F (x)
are equivalent as shown in Theorem 23.5 in [8].


