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Day-Ahead Energy Markets
E Market (ISO
\nergy arket | )/ total bidding curves

L’—r>“/ bidding gﬂﬂ
curves S !
0 price

e

] multiple spots
Example 2 time spots, 3 aggregators

Aggregator 1 Aggregator 2 Aggregator 3

Market Results Clearing Price

(producer) (consumer) (prosumer)
Spot 1 (AM) 150 [kWh] -250 [kWh] 100 [kWh] 10 [yen/kWh]
Spot 2 (PM) 100 [kWh] -50 [kWh] -50 [kWh] 5 [yen/kWh]

Decision variables: | 150 . —250 . 100 . 10
171 100 2= g 3= s0 A
Balanced

Market clearing: Find “desirable” \* & (v})aca such that > .c4%: =0




%\/Iarket Clearing as Optimization

Aggregator 1 Aggregator 2 Aggregator 3
(producer) (consumer) (prosumer)

Spot 1 (AM) 150 [kWh] -250 [kWh] 100 [kWh] 10 [yen/kWh]

Market Results

Clearing Price

Spot 2 (PM) 100 [kWh] . 0 [kWh] -50 [kWh] 5 [yen/kWh]
Lq

A*

v’ See later how to

Profitof Agg a:  J,(z); \*) = (A", 2}) — Fo.(z)) determine F(z)

«

(selfish objective function) income cost (especially for prosumer!)
Social profit: Z Ja(x; A7) = <>\*,N> - Z Fo(zy)
acA acA > acA social cost

(social objective function)

Social profit maximization = Social cost minimization

mln ZF To) St Z:ca:O

x
( «@ c16¢4 acA

dual: \*

{prlmal( o)acA
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Bidding Curves for Market Clearing

Suppose that bidding curves for each spot are submitted to ISO

Aggregator 1 Aggregator 2 Aggregator 3 Total
o 3 i amt 1 =1
-------------- ; =  Aam o Aam | Aa
Spot 1 (AM) I_EAM 0 i 0 _/ < mo "/%
0 : >

= A
L1.PM

_____ 0 ’ AL > OT % AP APM
Spot 2 (PM) \ _../ V =2 & >
: M. | !

0

53 ISO can find each clearing price and balancing amounts
X\ﬁ as crossing points of (total) bidding curves

A

But... Are such crossing points really solutions of |

social cost minimization: mm ZF Tq) st Y xa =0 ?7?

:I}
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Brief Summary: Bidding System Design

Socially optimal market clearing problem:
Find {prlmal (73,)acA solving min ZF To) St Zazazo

dual: \* (Ta)aca acA

Q1: What is a reasonable cost function F.(z,) ??

v’ Prosumption x, should be a mixture of generators, batteries, renewables etc

Q2: Is it possible to construct bidding curves from F,(z,) ??

v’ Social cost should be minimized with (z,)ac4 and A\* found as crossing-points

Energy Market (I
\ gy ( / total bidding curves

A

N DY

v’ Bidding system design = Distributed algorithm design under pre-specified ISO operation
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Prosumption Cost function

1 r =g — [+ noutyout — _L_§in v’ Constraints: g€ G, 6 € D
o (eg. 0<9<79)  Given
Internal decision variables
. | generated power ¢ Generation cost  G(g)
battery charge/discharge §'™, §°U* | Battery usage cost D(J)

[Theorem] If G(y) and D(s) are both convex, then

F(x) = ' G D(d ' '
() (g}ér)nelgl__@){ (9) + D( )} is convex with respect to «

where F(x) := {(975)egszx:g_l+nout5out_n%5in}

Example 2 time spots (AM/PM) Constants: [ay = 50, lpy = 10, 7% =" =1

zam \ [ g9am — 50+ 0% — O
gpm — 10 + 6858 — o,

g,6 not unique!

F(aan, zpy) = min {G(g) n D((S)} 5.t (

g,0 TPM
v z =0 :supply-demand balance inside aggregator

Optimal strategy for energy resources ensures convexity of F'(x)
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Prosumption Cost function

1 r =g — 14 noutsout — _Lgin v/ Constraints: g€ G, 0 €D
o (eg. 0<9<79)  Given
Internal decision variables
. | generated power ¢ Generation cost ~ G(g)
battery charge/discharge §'™, §°U* | Battery usage cost D(J)

[Theorem] If G(y) and D(s) are both convex, then

F(x) = ' G D(d ' '
() (g’(sr)nelgl__(x){ (9) + D( )} is convex with respect to «

where F(x) := {(975)egxp:x:g_l+nout5out_n%n5in}

v Uncertain renewables can be handled as robust optimization like:

Flz) = ' {G +D5}
() me smin (9) (9)

: . . on-going work
where P is a scenario set of renewable generation

(More interesting to see how magnitude of uncertainty affects economics!)
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Derivation of Bid Functions

A

Example 2 time spots sy = 50, lpy = 50 | Gobed
iy |
Generators & loads: (mAM> = (gAM AM) 950 1B i
TPM gpMm — lpm - (A+B) | § [kWh]
0 50 100

(A) 0~50 [kWh] 5 [yen/kWh]

S f tors:
pec or generators {(B) 0~50 [kWh] 10 [yen/kWh]

. additively
Generation cost: G(gam, gpm) = Go(gam) + Go(9pM) decomposable
Feasible generator outputs: 0 < gay < 100 0 < gpm < 100 disjoint

J(x; ) = A — G 50
prh (23 4) wAMreI%E—wgo,m]{ AMEAM o(@an +50)} decomposable!

o + mafgo 0 {Apmzpm — Go(xpm + 50) }
&) Bid functions il

x; (A\¢) = arg ﬁnax ] {A\xy — Go(xy +50)}, t € {AM,PM}
z+€[—50,50
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%\/Iathemancs behind Bid Functions

Bid functions (period-specific) 750 .----.9 ................... :
z; () = arg L cmax {Mwy — Go(zy +50)} 250 i 9w
0 50 100
Bidding curve monotone Maximum profit convex

4 23 [kWh] increasing N

5 {-----emeemmeeeee ‘7 CC:()\t) — &]z;k()‘t)
0 >
5 | 5 10 \{ [yen/kWh]

; [yen
10 15/

A [ yen/kWh]

—250 ¥

J*0) = max  { N — Golas +50)} Legendre transform
¢ €[—50,50] of cost function

[Legendre transformation] (convex conjugation) v F — F «—— [ :convex

F(A) = sup (A z) = F(z)}




Multiperiod Bid Function

Generation cost: G(gam, gpm) = Go(gam) + Go(gpm)
Feasible generator outputs: 0 < gay <100 0 < gpy < 100

Ramp rate limit (Added): —10 < gam — gpMm < 10 temporally correlated!

Multiperiod bid function indecomposable!

2 (\) = argmax (A z) — F(a)} = (szuAM, m))

TEX Hyv (Aan, Apm)
v ¥ = OF : monotone increasing
biddire<clirves i
< bidding hyperplanes  « L
- APW )\pM
AAM AAM

Multiperiod bid function is not compatible with current bidding system




Separability of Multiperiod Bid Function

van | [ O%% — oy, t U [yen]
Example Battery aggregator <xPM ) = (5%& _gin ) ) .
Si[yen/kWh]
~100 0 c
SOC constraints: ¢ € Dgoc not disjoint! | 100 S [kWh]
yen/kWh]
Cost function based on utility of final SOC: £ —1000
! -
D(6) = —U(Sﬁn(5)> San(8) = so + Z (61 — §out) not additively 2

te{AM,PM}

decomposable!

X

[Lemma] The multiperiod bid function is separate iff

xi (A1)

I.e.

the cost function is additively decomposable and its domai

z) =) Fi(z), ©€X X

in is disjoint

X)C'n

Negative fact!! Traditional bidding curves available just in very special cases



Brief Summary: Bidding System Design

(xa)aGA
o

Socially optimal market clearing:  min ) Ful(za) st. Y za=
cA

v’ Bidding system design = Distributed algorithm design under pre-specified 1ISO operation

Th = i '
[Theorem] F(x) (g’(sr)nelgl__(x){G(g>—|—D(5)} IS convex

where F(x) := {(975)ngpzaj:g_l+nout5out_n%(sin}

Multiperiod bid function: [ @A
() = argmax (A, @) — ) jdding hyf

/ monotone increasing &* — 0T &' w0 7,

[Lemma] 2 O0n) additively decomposable
1L n
z"(\) = : = F)=) Fiz), z€Xx---xX,
z;,(An) / separate t=1 disjoint

Bidding system design for multiperiod markets is not so simple!! , .
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Ideas in Proposed Approach

A) Basis transformation towards better approximation

B) Approximation of bidding hyperplanes to bidding curves

A

y

llll

large variance

C) Sequential market clearing scheme

L] L Approximate bidding curve

] W-W[/m Zani(Aan) = Thn(Aans, Apa)

PM=APM

temporal correlation
reduced!

/5
smaller
variance

/-’L ave

v From optimization view: (A) preconditioning (B)-(C) updates of primal/dual variables s



Energy Shift: A Key Property of Batteries

100“ [kWh]
A 1 t . L1,AM > _ (gAM ) -------------------------------------
g8 (genera OrS) (fcl,PM gpM 60 } (B) 10 [yen/kWh]

Spec of gens: (A) 0~50 [kWh] 5 [yen/kWh] I e B

Ol TaM IpPM

7 = —20 . . Y 5
Agg 2 (loads): (éiﬁ) = (_éﬁ) = (_60> Optimal price: (ﬁiﬁ) = (10)

_ sout _ gin N social cost minimum
Agg 3 (batteries): (x?”AM) = ( o §M> L AL
I3 PM 5PM - 5PM
shift 50 }(B) 10 [yen/kWh]
Ao > Ai, { PM: discharge (sell) B 30/ .............
AM: charge (buy) fg (A) 5 [yen/kWh]
New optimal price:  *Av | = (° ’ xAM PM _
APM 5 Battery leads to price levelling-off!

Energy market with explicit consideration of energy shift??
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Fourier-Like Basis Transformation

Example 2 time spots Wave = ZANFEEN Wegy = EAMZTEY
T [kWh] T [kWh] T [kWh]
wave -~ - -
Wghf ---- --------- .
I . | I I > —Wshf t---------- I—-l--
0| Tam TpMm — 0| AM PM —I_ AM PM

TAM 1 1
Wave Wsft
ITPM 1 —1

average (total) energy shift energy (PM to AM)

(AAM> (1) .\ ( 1 ) Have : average (levelling-off) price
— Have Msft oo
APM 1 T\ Uste : energy shift price 9

Explicit consideration of levelling-off price & energy shift price

i rimal: (W),)acA
Energy shift market: mn Z Ho(we) st Y we =0 P . ©



Sequential Market Clearing

Step 1) Market clearing of average energy amounts

w:;,ave (/’Lavea /J“Sft)

*

wa,sft (Mavea ,usft)

Multiperiod bid function: ( ) = argrgUaX{w, W) — Ho(wa)}

Approximate bid function: @y, ,.c(ftave) = W ave(Bave tiste)|,

3 * - : A *

wa,ave

assumption (premise) of
price levelling-off

AAM 1
> = HMave + st
Have ApM 1 -1

= |SO determines fiyye & (W) .c)aca by approximate bidding curves

Step 2) Market clearing of shift energy amounts

cleared amount

A

Approximate bid function: w}, . (fist) = arg max { flsgwa stt — Ha (W) aver Wastt) }

W, sft

== |SO determines /i & (W) )aca by approximate bidding curves /
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Example: Sequential Market Clearing

a:l,AM> _ <9AM> { (A) 0~50 [kWh] 5 [yen/kWh]

Agg 1 (generators): ( (B) 0~50 [kWh] 10 [yen/kWh]

I1,PM gpM

roam | _ ((~lam ) _ (20 [ Utility [yen]
Agg 2 (Ioads). (vTQ,PM ) N ( —lpm > N (—60> 150 3 fyen/kWh]
—50 0 el

_ | 5ot — gin 50 Final SOC
Agg 3 (batteries): | " | = | AM T %AM
883 ( ) (rs,pm SR — B en/kwh] [KWh]
A 350
Socially optimal market results (only god knows!!)
4 [kWh] 4 [kWh]
100 [ Optimal clearing price:
(B) 10 [yen/kWh] . 20 ) :
x *
50 [-4040-5 o ( fM>—< )
0 . L3, PM APM 0
(A) 5 [yen/kWh] ~90
- - > v’ optimal price levels off
01 27 am 21 Py (i.e. puipe =0)
Agg 1 Agg 3
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Example: Sequential Market Clearing

Agg 1 (generators): (a:AM> _ (gAM> { (A) 0~50 [kWh] 5 [yen/kWh]

T1PM gpM (B) 0~50 [kWh] 10 [yen/kWh]
1 —90 AUtility[yen]
Agg 2 (loads): (iQ’AM ) = ( _ZAM > = ( _60> 150 g ,
2,PM PM 50 o g Eye n/lfWh]
. ) gout __ 5in 50 .

Agg 3 (batteries): <$3,AM > _ ( ﬁﬁf ﬁlM ) i Final SOC

T3,PM 0N — P . /7 [yen/kwh] [KWhI
1) Market clearing of average energy amounts - —350

Approximate bid function: w}, ...(fave) = W} ave(flaves Hsit) | o0

wik,ave 1 /:L;ve =95 ws,ave i wg,aveﬂ

discharge (sell)

100 5 (0] P—

50 0 e 0| 3 5|
40 40— e ol [T
0 5 10 ,[:Lave;[yen/kWh] =+ charge (buy)
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Example: Sequential Market Clearing

Agg 1 (generators): (xAM> _ (gAM> { (A) 0~50 [kWh] 5 [yen/kWh]

1 pn gon (B) 0~50 [kWh] 10 [yen/kWh]
1 —90 1 Utility [yen]
Agg 2 (loads): (mQ’AM ) = ( _ZAM > = ( _60> 150 g ,
*2,PM oM —50 0 3 [yen/kWh]
SRV (VI I (A V% 50 Final SOC
Agg 3 (batteries): (I&PM ) ( sout — gin > /7 fenkwn KW
1) Market clearing of average energy amounts % —350

Balancing amounts: @75, =40 w5, =—40 @5, . =0 Average price: /i, =5

2) Market clearing of shift energy amounts

Approximate bid function: wy, i (fisre) = arg max {fisswa,ste — Ho (W5 ave: Wastt) }

a,sft

A~ K ~ % A~k
wl,sft w2,sft 1 w3,sft 1 A
50 st — 0
40 e 20
10 ? ; 0 .

' “10  fisty [yen/kWh] 0 [ise _201 [lste
"""""" —40 —50 22/28



Example: Sequential Market Clearing

Agg 1 (generators): (a:AM> _ (gAM> { (A) 0~50 [kWh] 5 [yen/kWh]

T1,PM grPM (B) 0~50 [kWh] 10 [yen/kWh]
_ 9 T Utilit
Agg 2 (IoadS): <$2’AM> = ( lAM) = ( 0) 150 |- 1IY[yen]
T2 PM —lpm —60
_ ( gout _ gin 50 Final SOC
Agg 3 (batteries): | M | = [ “AM T %AM a it
gg 3 ( ) (x&PM 2% — oy /7 fenkwn] KWh
1) Market clearing of average energy amounts o —350

Balancing amounts: @75, =40 w5, =—40 @5, . =0 Average price: /i, =5

2) Market clearing of shift energy amounts

Balancing amounts: 0} =0 @}, =20 @5, = —20 Shift energy price: il =0

[Theorem] Socially optimal market clearing iff optimal price levels off

e, (T7'0%)aea = (78)aca, T7HR =N <= N =... =)\

(8
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Example: Sequential Market Clearing

Agg 1 (generators): (:cAM> _ (gAM> { (A) 0~50 [kWh] 5 [yen/kWh]

1P ge (B) 0~50 [kWh] 10 [yen/kWh]

— —20
Agg 2 (loads): (mQ’AM> = ( AM) = (_60> Optimal clearing price:

T2 PM —lpm
Mim ) [
(without battery aggregator) APM 10

1) Market clearing of average energy amounts

Balancing amounts: @7, =40 w;,,.=—40 © (w/o) = Average price: i}, =5

2) Market clearing of shift energy amounts

Clearing price:

A % A %
wl,sft ' [kWh] ﬂ:ft — _925 w2,sft
1 20 R o9 B s
| 90 25 [lgte [yen/kWh] 0 flsft Y
—40 APM

At least approximate clearing even if optimal price does not level off ,, .




Numerical Example

Agg 1, Agg 2 (loads & batteries)

95% (Agg 1)
94% (Agg 2)

SOC/inverter constraints: parameters

Charge/discharge efficiencies: {

Agg 3 (9 types of generators)

5 10 15 20 25
Generation costs: 3, 6,..., 27 [yen/kWh] Time [h]

Resultant social costs when varying battery penetration levels (16 time spots)

6

x 10

[U—
[U—

——- : time domain (sequential clearing)

[E—
O
(V)]

—— : Fourier-like domain (sequential clearing)

-@- : socially optimal (only god knows)

’

Almost optimal market clearing 2 .
when high battery penetration! L4

Social cost [yen]

09 L

Battery penetration level == price levelling-off
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Sequential Clearing in Time Domain

Clearing price Generators (9 types)
—_ T T T E 1500 ALA .::: AA A AN AN AN AA AA ALA
§ 20+ -€>- :socially optimal =
= —¥— : approx clearing =,
5 E
2 10! Og =
3 )
g 5 R 5
29 large gap from optimal! 3
0 5 10 15 20 25
Time [h]
= Charge/discharge of batteries SOC of batteries
= 2000 , . | | =" 4000 . .
Z =
o 1000} =4,
20 >
< o
= 0 5)
Q
n (o
. — (D]
 _1000; = -2000"
(D] O
20 )
& -2000 | | | | 2 -4000 | | | .
& 0 5 10 15 20 25 0 5 10 15 20 25
Time [h] Time [h]
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Clearing price

§ 20+ =€>=-:socially optimal

< 5 —3¥— : approx clearing

S

— 10 L

O

.S .

£ 3 smaller gap from optimal

0 5 10 15 20 25

Time [h]

Charge/discharge of batteries

\®)
S
S
O

- % Agg. ]

[— |l
S S
S o S

-2000

Charge/discharge [kWh]

Generation [kWh]

Stored energy [kKWh]

Generators (9 tvpes)

—
N
S
S

—
)
S
S

0 5

Sequential Clearing in Fourier-Like Domain
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Yi Concluding Remarks

» Bidding system design for multiperiod electricity markets

» Distributed algorithm design for convex optimization
» Each aggregator submits bidding curves to ISO

» ISO finds clearing price and balancing amounts by bidding curves

» Proposed approach to bidding system design
» Basis transformation compatible with energy shift markets

» Sequential clearing scheme based on approximate bidding curves

A Distributed Scheme for Power Profile Market Clearing under High Battery
Penetration, IFAC WC 2017

Bidding System Design for Multiperiod Electricity Markets: Pricing of Stored Energy
Shiftability, CDC 2017 (to appear)

Thank you for your attention!



