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Abstract: In this paper, we formulate a problem of power profile market clearing and develop
a distributed market clearing scheme with explicit consideration of high battery penetration.
The power profile market is a multiperiod electricity market in which each aggregator aims at
making the highest profit by transacting a power profile, i.e., a time sequence of energy amounts
at several time slots, that is generated by dispatchable power generation as well as the charge
and discharge of batteries. It is theoretically shown that the clearing price profile during the time
period of interest tends to level off in the high penetration of batteries. This finding enables to
develop a distributed market clearing scheme that is implemented as a bidding strategy for the
total energy amount during the period followed by a distributed iterative algorithm for profile
imbalance minimization. Numerical simulations demonstrate the price leveling-off led by high
battery penetration and the efficiency of the proposed distributed scheme.
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1. INTRODUCTION

The development of a smart grid has been recognized as
one of key issues in addressing environmental and social
concerns, such as the sustainability of energy resources
and the efficiency of energy management [Annaswamy and
Amin (2013)]. In particular, towards effective integration
of dispatchable and renewable power generation, the po-
tential of energy storage has been attracting international
attention in smart grid community. Actually, energy stor-
age techniques can be expected as a fundamental tool
for load shifting as well as reducing the fluctuation of
renewable energy.

The penetration of energy storage is generally supposed to
be spatially distributed due to the limitation of installation
capability. Examples of distributed energy storage include
electric vehicles, home energy storage systems, batteries in
electric devices, and so forth. Even though the impact of
these individual materials and components on the grid may
be tiny, the aggregation of them has high potential to serve
for supply-demand balancing in power system operation.
This implies that an aggregator, a manager of available
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energy resources including energy storage, can be a strong
stakeholder in an electricity market.

With this background, we formulate an electricity market
mechanism with explicit consideration of battery pene-
tration, which is referred to as a power profile market
mechanism. A power profile market is a multiperiod elec-
tricity market in which each aggregator aims at making
the highest profit by transacting the time sequence of
energy amounts at several time slots. This energy amount
sequence, formulated as a vector having the dimension
compatible with the number of time slots, is referred to as
a power profile. Each aggregator generates a marketable
power profile by aggregating available energy resources,
such as dispatchable and renewable power generation and
the charge and discharge of distributed batteries. As shown
in Section 4.3 of [Annaswamy and Amin (2013)], such a
multiperiod market is indispensable for making use of the
power shiftability of batteries and flexible loads. This is
because their utility or cost function is not an additively
decomposable function of period-specific power consump-
tion and generation.

To establish a mathematically rigorous formulation of
the power profile market mechanism, we first derive a
regulation cost function of marketable power profiles,



consisting of load, dispatchable power generation, and
battery charge and discharge power profiles. Then, we
show that the profile regulation cost function is necessarily
convex provided that the aggregator adopts the optimal
strategy for managing dispatchable power generators and
batteries, whose cost functions are assumed to be both
convex. This clarification enables to formulate the power
profile market clearing problem as a convex program.

Furthermore, we develop a distributed solution scheme
to the power profile market clearing problem, which can
be implemented as an indirect communication among ag-
gregators through an independent system operator (ISO).
The market clearing scheme is developed by theoretically
showing that the clearing price profile, i.e., the multiperiod
clearing price vector of the power profile market, tends
to level off in high penetration of batteries. Numerical
simulations in this paper demonstrate the price leveling-
off as well as the efficiency of the proposed distributed
scheme, which consists of a bidding strategy for the total
energy amount during the period and a distributed itera-
tive algorithm for profile imbalance minimization.

Finally, references related to electricity markets are dis-
cussed. As market clearing strategies, a number of bid-
ding and dynamic pricing methods have been developed
in different settings; see [Hansen et al. (2015); He et al.
(2015); Liu et al. (2016); Shiltz et al. (2016)] and refer-
ences therein. However, these existing methods are not
directly applicable to the power profile market clearing
problem. This is due to the fact that a transacted power
profile is a high-dimensional vector and the cost function
of power profile regulation is not strictly convex because
of the power shiftability of batteries; see Section 2.3 for
details. Furthermore, even though the efficiency and signif-
icance of their methods are demonstrated numerically, the
structures and properties of market mechanisms are not
theoretically investigated. In contrast to this, by utilizing
tools from convex analysis theory, we clarify a particular
impact of high battery penetration on multiperiod mar-
ket mechanisms on the basis of a simple but meaningful
mathematical formulation.

The remainder of this paper is structured as follows. In
Section 2, we first formulate the power profile market clear-
ing problem, and then discuss the difficulties in addressing
it. Next, in Section 3, we develop a distributed market
clearing scheme while clarifying that the clearing price pro-
file tends to level off in high battery penetration. Numer-
ical simulations are provided in Section 4 and concluding
remarks are provided in Section 5. All mathematical proofs
are shown in Appendix.

Notation: We denote the set of real values by R, the set of
nonnegative real values by R+, the image of a matrixM by
imM , the all-ones vector by 1, the orthogonal projection
of a vector v onto a subspace V by projV (v), and the direct
product of sets S1, . . . , Sn by

S1 × · · ·× Sn =
∏

i∈{1,...,n} Si.

A function F : Rn → R is said to be convex if

F
(
(1− λ)x+ λx′) ≤ (1− λ)F (x) + λF (x′) (1)

for all λ ∈ (0, 1) and for every pair of x and x′ in the
domain such that the value of F is finite. In particular,

F is said to be strictly convex if (1) holds with the strict
inequality unless x = x′.

2. FORMULATION OF POWER PROFILE MARKETS

2.1 Aggregator Models

In this subsection, we give a model of aggregators, each
of whom transacts a power profile, i.e., the time sequence
of energy amounts at several time slots. Let A denote the
index set of aggregators and let n denote the number of
time slots during the period of interest. The power profile
equation of the αth aggregator can be described as

xα = gα − lα + ηoutα δoutα − 1
ηin
α
δinα , α ∈ A (2)

where xα ∈ Rn denotes the resultant power profile to
the grid, gα ∈ Rn

+ denotes the power generation profile
of dispatchable generators, lα ∈ Rn

+ denotes the load
profile, and δinα ∈ Rn

+ and δoutα ∈ Rn
+ denote the battery

charge and discharge power profiles. The positive constants
ηinα and ηoutα denote the charge and discharge efficiency,
respectively, each of which takes a value in (0, 1]. Note
that the sign of xα is positive for outflow direction to the
grid.

In the following, we suppose that the load profile lα is
fixed as a constant vector, whereas the dispatchable power
generation profile gα as well as the battery charge and
discharge power profiles δinα and δoutα are decision variables.
To realize a desired power profile xα, each aggregator
determines gα and δα := (δinα , δoutα ) as complying with the
constraints of

gα ∈ Gα, δα ∈ Dα, (3)
where Gα and Dα denote some connected spaces including
the origin. The left condition in (3) is given to represent
the upper and lower bounds for the dispatchable gener-
ator outputs, whereas the right is given to represent the
limitation of inverter and battery capacities.

With respect to each power profile xα, we denote the
feasible subspace of the dispatchable power generation and
the battery charge and discharge profiles as

Fα(xα) :=
{
(gα, δα) ∈ Gα ×Dα : (2) is satisfied

}
, (4)

and denote the set of realizable power profiles as

Xα :=
{
xα ∈ Rn : Fα(xα) ̸= ∅

}
. (5)

Furthermore, we denote the generation cost function of
dispatchable generators and the battery usage cost func-
tion as

Gα : Gα → R+, Dα : Dα → R+. (6)
On the basis of this formulation, we define a cost function
with respect to power profile regulation as follows.

Lemma 1. In the notation above, if the generation cost
function Gα and the battery usage cost function Dα are
convex on convex domains Gα and Dα, then the profile
regulation cost function defined by

Fα(xα) := min
(gα,δα)∈Fα(xα)

{
Gα(gα) +Dα(δα)

}
(7)

is convex on the convex domain Xα.

The value of Fα(xα) in (7) represents the minimum cost
to realize a power profile xα. Lemma 1 shows that the
profile regulation cost function turns out to be convex



with respect to generated power profiles, provided that
the aggregator adopts the optimal strategy for the deter-
mination of the dispatchable power generation profile gα
and the battery charge and discharge power profile δα. In
the rest of this paper, we assume the convexity of Gα and
Dα, which implies that every Fα is convex.

2.2 Power Profile Market Clearing Problem

In this subsection, we formulate a market clearing problem
with respect to power profile transaction based on the
aggregator model in Section 2.1. Let λ ∈ Rn denote the
price profile with respect to power profile transaction. Note
that this vector corresponds to the set of prices at all
time slots during the period of interest. Then, the profit
function for selling surplus power (or for buying shortage
power) during the period is defined as

Jα(xα;λ) := λTxα − Fα(xα), (8)

where λTxα represents the total income by selling the
power profile during the time period. On the basis of
this profit function, each aggregator can determine a bid
function with respect to power profile transaction given as

xα(λ) :=
{
xα ∈ Xα : Jα(xα;λ) ≥ Jα(x

′
α;λ), ∀x′

α ∈ Xα

}
,

(9)
which corresponds to the set of xα that attain the max-
imum of the profit function Jα(xα;λ) with a fixed price
profile λ. The bid function is a set valued function, i.e., it
is mathematically referred to as a correspondence

xα : Rn → Rn. (10)

It should be noted that the graph of xα is depicted as a
one-dimensional curve for n = 1, whereas it is depicted as
a higher-dimensional hyperplane for a general dimension
n.

In the rest of this paper, for simplicity of notation, we
denote the direct product of xα as

xA(λ) :=
∏

α∈A xα(λ).

Furthermore, the tuple of a symbol indexed by α ∈ A is
denoted by the corresponding symbol with the subscript
of A, for example

xA := (xα)α∈A.

The following lemma shows the existence of a clearing price
profile, determined via the aggregation of power profile bid
functions.

Lemma 2. Consider a set of aggregators in Section 2.1. If
at least one profile regulation cost function Fα is smooth,
then there exists the unique clearing price profile, denoted
as λ∗, such that the power profile balance

∃x∗
A ∈ xA(λ∗) s.t.

∑
α∈A x∗

α = 0 (11)

is attained.

The problem of power profile market clearing is formulated
as a problem of finding the clearing price profile and the
tuple of clearing power profiles, denoted as λ∗ and x∗

A,
respectively, that attain the power profile balance in (11).
More formally, the power profile market clearing problem
is summarized as follows.

Problem. Consider a set of aggregators in Section 2.1.
Devise a market clearing scheme to realize the power
profile balance in (11) such that the following requirements
are satisfied.

– The clearing price profile λ∗ is determined by the ISO
without the information of the profile regulation cost
functions of the aggregators.

– Each clearing power profile x∗
α is determined by an

aggregator without the information of the profile reg-
ulation cost functions of the other aggregators.

2.3 Difficulties in Power Profile Market Clearing Problem

In this subsection, we overview the difficulties in address-
ing the power profile market clearing problem in Sec-
tion 2.2, while reviewing several existing methods for mar-
ket clearing. The problem of power profile market clearing
is equivalent to finding a solution to the convex program
of

min
xA

∑
α∈A Fα(xα) s.t.

∑
α∈A xα = 0, (12)

whose Lagrange relaxation is given by

max
λ

min
xA

∑
α∈A

{
Fα(xα)− λTxα

}
. (13)

Note that the optimal Lagrange multiplier of (13) corre-
sponds to the clearing price profile. This can be seen from
the fact that the minimization in (13) is equivalent to
the maximization of the profit function Jα in (8); thereby
leading to the problem of finding x∗

A and λ∗ such that (11)
holds.

One may think that the ISO can easily find the clearing
price profile λ∗, provided that each aggregator submits the
graph of the bid function xα in (9) to the ISO. However,
not only finding λ∗ that solves the generalized equation
in (11), but also plotting the graph of the bid function
xα is not straightforward in multi-dimensional cases, i.e.,
n ≥ 2. This is due to the fact that the graph of each
element of xα is depicted as an n-dimensional hyperplane.
This implies that plotting the graph of each element of xα

requires griding the n-dimensional space of price profiles;
thereby incurring considerably large computation loads.
Thus, existing bidding strategies, such as in [Liu et al.
(2016)], are not directly applicable to the power profile
market clearing problem.

As another approach, dynamic pricing methods can be
found in the literature [Hansen et al. (2015); Shiltz et al.
(2016)]. This approach is mainly based on the dual ascent
algorithm to solve the convex program in (12), or equiva-
lently (13), namely

{
xk+1
α =argmin

xα

Fα(xα)− λT
kxα, α ∈ A

λk+1=λk + γk
∑

α∈A xk+1
α ,

(14)

where γk denotes a step size to update the dual variable.
Even though this algorithm can be implemented in a
distributed manner, the update of each primal variable
xk
α assumes the strict convexity of the cost function Fα.

In fact, the cost function of an aggregator with battery
storage does not generally satisfy the assumption of the
strict convexity; see Section 3.1 for details.

As seen above, neither a bidding strategy nor a dynamic
pricing method is directly applicable. Thus, it is crucial to
develop a novel distributed scheme for the power profile
market clearing problem.



3. POWER PROFILE MARKET CLEARING SCHEME

3.1 Price Analysis under High Battery Penetration

In this subsection, we first analyze a property of the
clearing price profile in a situation where a large amount
of battery storage penetrates in aggregators. In particular,
it will be found that the clearing price profile tends to level
off in high battery penetration. Furthermore, the level-off
price can be found via a bidding strategy with respect to
the total amount of energy transaction during the period
of interest.

For the price analysis below, we introduce a notion of di-
rectional derivatives. The one-sided directional derivative
of Fα at xα with respect to v is defined as

F ′
α(xα; v) = lim

ϵ↓0

F (xα + ϵv)− F (xα)

ϵ
if it exists. In particular, the one-sided directional deriva-
tive is said to be two-sided if F ′

α(xα;−v) exists and

F ′
α(xα;−v) = −F ′

α(xα; v).

Given this notation, we define the following terminology.

Definition. Consider an aggregator in Section 2.1, and let

(i, j) ∈ {1, . . . , n}× {1, . . . , n}
denote a time point pair. Then, a power profile xα is said to
be (i, j)-shiftable if the directional derivative of the profile
regulation cost function Fα at xα with respect to ei − ej
is two-sided and zero, where ei denotes the ith canonical
unit vector.

An aggregator with battery storage is generally endowed
with this notion of power profile shiftability. This is
because the amounts of battery charge and discharge
power at some time slots can be shifted without changing
the total amount of charge and discharge energy during
the time period of interest. Note that Fα is not strictly
convex whenever it is (i, j)-shiftable. This implies that
the profile regulation cost function of an aggregator with
battery storage does not satisfy the assumption of strict
convexity in general.

The following lemma shows that the power profile shifta-
bility can lead to the leveling-off of clearing price profiles.

Lemma 3. Consider a set of aggregators in Section 2.1,
and let λ∗ denote the clearing price profile in (11). Then,
there exists at least one aggregator such that a power
profile xα ∈ xα(λ∗) is (i, j)-shiftable if and only if

λ∗
i = λ∗

j , (15)

where λ∗
i denotes the ith element of λ∗.

Lemma 3 shows that the shiftability of an optimal power
profile xα ∈ xα(λ∗) that maximizes the profit function
J(xα;λ∗) in (8) leads to the leveling-off of the clearing
price profile λ∗. Note that the degree of power shiftability
tends to increase as the capacities of batteries increase.
Therefore, if a sufficiently large amount of battery storage
penetrates in aggregators, we can expect that the prices
at all time slots are close, i.e., λ∗ is close to λ∗

e1 for some
scalar λ∗

e . In what follows, focusing on this situation of
high battery penetration, we develop a distributed scheme
for profile market clearing

The following theorem shows that the value of λ∗
e , called

the clearing energy price, can be determined by a bid-
ding strategy with respect to the total amount of energy
transaction during the period of interest, where we use the
energy bid function defined by

eα(λe) := 1Txα(λe1), (16)

whose direct product is denoted as

eA(λe) :=
∏

α∈A eα(λe).

Theorem 1. Consider a set of aggregators in Section 2.1. If
at least one profile regulation cost function Fα is smooth,
then there exists the unique clearing energy price, denoted
as λ∗

e , such that the energy balance

∃e∗A ∈ eA(λ∗
e) s.t.

∑
α∈A e∗α = 0 (17)

is attained. Furthermore, assume that

λ∗ ∈ im1 (18)

for the clearing price profile λ∗ in (11), or equivalently,
assume that there exists at least one aggregator such that
a power profile xα ∈ xα(λ∗) is (i, j)-shiftable for every
time point pair (i, j). Then, λ∗ coincides with λ∗

e1.

Theorem 1 provides a bidding strategy for determining
the clearing energy price λ∗

e , which can be expected
to approximate the clearing price profile as λ∗ ≃ λ∗

e1
especially in high battery penetration. It should be noted
that, in a manner similar to existing bidding strategies
[Liu et al. (2016)], the ISO can easily find the value of λ∗

e
in (17) by aggregating the graphs of energy bid functions
submitted from individual aggregators. The graph of eα
in (16) is reasonably plottable by each aggregator because
it is just a one-dimensional curve, namely

eα : R → R,
as opposed to a high-dimensional hyperplane of xα in (10).

3.2 Distributed Scheme for Imbalance Minimization

In this subsection, we develop a distributed scheme to find
a tuple of power profiles that minimizes the amount of
power profile imbalance. The alternating direction method
of multipliers (ADMM) [Boyd et al. (2011)] provides a
distributed iterative scheme as follows.

Theorem 2. Consider a set of aggregators in Section 2.1.
Let λ be a price profile, and consider the iterative algo-
rithm given as

xk+1
α = projxα(λ)

(
xk
α −∆k

α

)
, α ∈ A (19)

where the update with respect to the index α is performed
in ascending order and the kth-step power profile imbal-
ance ∆k

α is defined as

∆k
α :=

∑
i≤α−1 x

k+1
i +

∑
i≥α xk

i . (20)

Then, for any initial value x0
A ∈ xA(λ), it follows that

x∞
A := lim

k→∞
xk
A

is a solution to the convex program of

min
xA∈xA(λ)

1
2

∥∥∑
α∈A xα

∥∥2 . (21)

In particular, if λ is given as the clearing price profile λ∗

in (11), then ∑
α∈A x∞

α = 0, (22)

which implies that x∞
A coincides with x∗

A in (11).



Theorem 2 provides a distributed scheme to solve the
imbalance minimization problem in (21). Note that the
update in (19) can be performed by individual aggregators,
provided that the power profile imbalance ∆k

α in (20) is
computed and informed by the ISO. Thus, the distributed
scheme can be regarded as a communication among the
aggregators through the ISO.

Combining the theoretical results in Theorems 1 and 2,
we develop a distributed scheme for power profile market
clearing as follows.

(i) Each aggregator submits the graph of the energy bid
function eα in (16) to the ISO.

(ii) The ISO determines the clearing energy price λ∗
e that

attains the energy balance in (17).
(iii) Each aggregator selects an initial power profile x0

α in
xα(λ∗

e1) and submits it to the ISO.
(iv) Each power profile xk

α is updated according to the
distributed scheme in (19) with λ = λ∗

e1 that attains the
minimization of the resultant power profile imbalance.

This power profile market clearing scheme can be expected
to work well in high battery penetration. This is owing
to the fact that the resultant power profile imbalance is
expected to be small if the approximation error between
λ∗ and λ∗

e1 is small. In particular, the power profile
market clearing problem in Section 2.2 is exactly solved if
λ∗ = λ∗

e1. The efficiency of this scheme will be numerically
demonstrated in Section 4 below.

4. NUMERICAL SIMULATION

4.1 Simulation Setup

We consider a power profile market that consists of three
aggregators. The period of power profile market clearing
is supposed to be six hours and the amounts of trans-
acted power are determined at every 30 minutes, i.e., the
dimension of transacted power profiles is n = 12. We
suppose that the first two aggregators manage five million
residential consumers with energy storage, whereas the
third aggregator manages a thermal generator, namely

xα = −lα + ηoutα δoutα − 1
ηin
α
δinα , α ∈ {1, 2}, (23)

and x3 = g3. In our simulation, ηoutα = ηinα = 0.95
for α ∈ {1, 2} are given for the charge and discharge
efficiency of batteries. The inverter and battery capacities,
corresponding to Dα in (3), are supposed to be 12 [kW]
and 24 [kWh], respectively, for one residential consumer.
The load profile lα is given as a net load profile including
consumption and photovoltaic power generation during
the period of 6 [h] to 12 [h], for which we use the data
measured at houses in Ohta city, Japan.

With G3 = R12
+ in (3), the fuel cost function of the thermal

generator is given as

G3(g3) = 0.19× ∥g3∥2 + 2.5× 1Tg3, (24)

which corresponds to the oil thermal generator in [Masuta
and Yokoyama (2012)]. On the other hand, the battery us-
age cost function Dα in (6) is supposed to be decomposed
as

Dα(δα) = Eα(δα)− Sα(δα), α ∈ {1, 2} (25)
where Eα represents a battery degradation cost function
given as

Eα(δα) = 10−5 × ∥δoutα ∥2, (26)
and Sα represents an assessment function with respect to
the stored energy at the termination time of the period of
interest.

Let s0α denote the initial amount of stored energy, i.e., the
state of charge, which is defined as the deviation from a
neutral value. Then, the amount of stored energy deviation
at the termination time can be represented as

sα(δα) := s0α + 1T(δinα − δoutα ). (27)

In our simulation, we set s0α = 0 for α ∈ {1, 2}, whose unit
is [GW0.5h]. It is reasonable to suppose that a higher level
of terminal stored energy is more preferable than a lower
level, and vice versa. To take into account this aspect,
each aggregator is supposed to assess the value of terminal
stored energy as

Sα(δα) :=

{
λ̂αηoutα sα(δα), sα(δα) ≥ 0,

λ̂α
ηin
α
sα(δα), sα(δα) < 0,

(28)

where λ̂α ∈ R+ denotes a constant electricity price offered,
e.g., by an independent energy supplier having a steady
contract with the corresponding aggregator. Comparing
the energy price λe with λ̂α, each aggregator determines
own energy bid function eα in (16), i.e., the battery usage
strategy for buying and selling energy in the six-hour
period. In our simulation, we set λ̂1 = 5.0 and λ̂2 = 4.0,
whose unit is [Yen/kW0.5h]. On the basis of the above
setting, we obtain the profile regulation cost function Fα

in (7) for each aggregator.

It should be remarked that Dα in (25) is convex because
Eα in (26) is convex and Sα in (28) is concave. To show
the concavity of Sα, i.e., the convexity of −Sα, we define

h(s) :=

{
λ̂αηoutα s, s ≥ 0,

λ̂α
ηin
α
s, s < 0,

which is concave for any values of ηoutα , ηinα ∈ (0, 1] and
λ̂α ∈ R+. Note that sα in (27) is affine and

Sα(δα) = h ◦ sα(δα).
Thus, the convexity of −Sα is proven by the fact that the
inverse image of a convex function under an affine mapping
is a convex function; see Appendix for details. Note that
Dα in (25) is convex but it is not strictly convex.

4.2 Results

In the following, varying the levels of battery penetration,
we solve the power profile market clearing problem in
Section 2.2. In particular, we consider the three cases
where 20%, 40%, and 60% of residential consumers have
the batteries. In Fig. 1, we plot the resultant clearing price
profile λ∗ ∈ R12 for each case, which is obtained by solving
the convex program in (13). As theoretically supported in
Lemma 3, the clearing price profile tends to level off as the
battery penetration level becomes high.

In the following, without knowing the exact value of the
resultant clearing price profiles in Fig. 1, we solve the
power profile market clearing problem according to the
distributed scheme developed in Section 3.2. The graphs
of the resultant energy bid functions eα in (16) are shown
in Fig. 2. From the total energy bid functions given as
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∑
α∈A eα, we find the clearing energy price λ∗

e in (17)
as 4.75, 4.53 and 4.52 [Yen/kW0.5h] for the 20%, 40%,
and 60% penetration levels, respectively. This procedure
corresponds to Steps (i) and (ii) in our distributed scheme.

Next, we implement the iterative scheme in Theorem 2
that performs profile imbalance minimization. This pro-
cedure corresponds to Steps (iii) and (iv). The norms
of resultant profile imbalance are plotted in Fig 3, where
the horizontal axis corresponds to the number of iteration
steps. From this figure, we see that some amount of profile
imbalance remains in the 20% penetration level, whereas
almost no amount of imbalance remains in the 40% and
60% penetration levels. This is compatible with the fact
shown in Theorem 2 that the clearing price profile in the
20% penetration level does not completely level off whereas
those in the 40% and 60% penetration levels clearly level
off; see Fig. 1. Finally, the resultant power profiles of the
aggregators are plotted in Fig 4. From this figure, we see
that our distributed scheme works well especially in high
battery penetration.

5. CONCLUDING REMARKS

In this paper, we have formulated a power profile market
clearing problem and develop a distributed market clearing
scheme with explicit consideration of high battery pene-
tration. It has been theoretically shown that the clearing
price profile during the time period of interest tends to
level off in the high penetration of batteries. On the basis
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Fig. 3. The norms of profile imbalance in the cases of
different battery penetration levels.
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Fig. 4. The resultant power profiles in the cases of different
battery penetration levels.

of this finding, we have developed a distributed market
clearing scheme implemented as the combination of an en-
ergy bidding strategy and a distributed iterative algorithm
for profile imbalance minimization.

The energy bidding strategy in this paper can be regarded
as a long-period version of the current energy market. For
example, an energy transaction is carried out at every 30
minutes in the Japanese electricity market. Our numerical
simulation suggests that, provided that the level of battery
penetration is sufficiently high, the energy balancing at
every 30 minutes, i.e., power profile balancing, can be at-
tained via the six-hour period energy transaction followed
by a profile imbalance minimization scheme. The power
profile market would be one of well-defined multiperiod
electricity markets that can utilize and enhance the po-
tential of energy storage.
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APPENDIX: MATHEMATICAL PROOFS

Preliminary Facts from Convex Analysis: We first overview
a rich variety of facts shown in convex analysis theory
[Boyd and Vandenberghe (2004); Rockafellar (1970)]. Let
F : Rn → R be a convex function. For A denoting a linear
mapping from Rn to Rm, the function F̂A defined by

F̂ (x) := F (Ax) (29)

is convex on Rn. Furthermore, the function F̌A defined by

F̌ (y) := inf
x

F (x) s.t. Ax = y (30)

is convex on Rm. The function F̂ is called the inverse image
of F under A, while F̌ is called the image of F under A;
see [Theorem 5.7, Rockafellar (1970)] for details.

The conjugate of F is defined by

F (λ) := sup
x∈dom F

{
λTx− F (x)

}
, (31)

where domF denotes the effective domain of F . It is known
that F is convex and the conjugate of F coincides with F
as long as F is convex, namely

F (x) = sup
λ∈dom F

{
xTλ− F (λ)

}
. (32)

Furthermore, the strict convexity of F is equivalent to the
smoothness of F . In convex analysis theory, the trans-
formation between (31) and (32) is called the Legendre-
Fenchel transformation, and some of conjugate pairs can
be found in closed forms.

The subdifferential of a convex function F is defined by

∂F (x) := {λ : F (x′) ≥ F (x) + λT(x′ − x), ∀x′ ∈ domF},
which is a multivalued mapping to a convex set. As shown
in [Corollary 31.5.2, Rockafellar (1970)], it follows that

∂F : Rn → Rn

is a monotone increasing mapping, namely
(
∂F (x)− ∂F (x′)

)T
(x− x′) ≥ 0, ∀x, x′ ∈ domF,

if F is convex. In a similar manner, it is shown to be
strictly monotone if F is strictly convex [Theorem 2.1, Luc
(1994)]. Furthermore, [Theorem 23.5, Rockafellar (1970)]
shows that

x ∈ ∂F (λ), λ ∈ ∂F (x)
are equivalent. These correspond to the first derivative
conditions for the suprema in (31) and (32).

Proof of Lemma 1: We see that xα in (2) is given as an
affine mapping of (gα, δα). As shown in (30), the image of
a convex function under an linear mapping, or equivalently
affine mapping, is a convex function. Thus, the convexity
of Fα in (7) is proven. !

Proof of Lemma 2: From the definition of the conjugate
function, we notice that

sup
xα

Jα(xα;λ) = Fα(λ)

for Jα in (8). Furthermore, the first derivative condition
for the supremum, namely

∂Jα(xα;λ)

∂xα
= 0,

leads to λ ∈ ∂Fα(xα). Because λ ∈ ∂Fα(xα) if and only if
xα ∈ ∂Fα(λ), we see that xα in (9) is identical to ∂Fα.
Thus, (11) is equivalent to the generalized equation of

0 ∈
∑

α∈A ∂Fα(λ∗). (33)

Note that ∂Fα is strictly monotone if Fα is strictly
convex. Furthermore, Fα is strictly convex if and only
if Fα is smooth. Thus, provided that at least one Fα is
smooth, the sum of monotone mappings in (33) is strictly
monotone. This proves the uniqueness of λ∗, which solves
the generalized equation in (33) with respect to a strictly
monotone mapping. !
Proof of Lemma 3: From the fact that xα ∈ ∂Fα(λ∗),
we have λ∗ ∈ ∂Fα(xα). As shown in [Theorem 23.4,
Rockafellar (1970)], it follows that

F ′
α(xα; v) = sup

λ∈∂Fα(xα)
vTλ.

Thus, (i, j)-shiftability of xα ∈ ∂Fα(λ∗) implies that

0 = F ′
α(xα; ei − ej) ≥ (ei − ej)Tλ∗,

0 = F ′
α(xα; ej − ei) ≥ (ej − ei)Tλ∗,

or equivalently, (ei − ej)Tλ∗ = 0. This leads to (15). !
Proof of Theorem 1: Note that (17) is equivalent to

0 ∈
∑

α∈A 1T∂Fα(λ∗
e1) = ∂

(∑
α∈A Fα(λ∗

e1)
)
,

where the sum of Fα(λe1) is strictly convex with respect
to λe, provided that at least one Fα is smooth. Thus, the
uniqueness of λ∗

e is proven in a manner similar to the proof
of Lemma 2.

Furthermore, (18) implies that λ∗ = γ1 holds for some
scalar γ. Substituting this into (33) and multiplying it by
1T from the left, we have

0 ∈
∑

α∈A 1T∂Fα(γ1),

which implies that γ solves the generalized equation.
Because of the uniqueness of the solution, the scalar γ
is identical to λ∗

e . This proves the claim. !
Proof of Theorem 2: We follow the arguments in [Boyd
et al. (2011)] for deriving the distributed scheme in (19).
A proof of convergence can be found in the reference or
in [Rockafellar (1976)]. Notice that the convex program in
(19) is equivalent to

min
xA,ϵ

1
2∥ϵ∥

2 +
∑

α∈A Ixα(λ) s.t.
∑

α∈A xα + ϵ = 0

where Ixα(λ) denotes the indicator function of xα(λ). For
this program, we consider the augmented Lagrangian in
the scaled form as

1
2∥ϵ∥

2 +
∑

α∈A Ixα(λ) +
1
2∥

∑
α∈A xα + ϵ+ y∥2

where y denotes the scaled dual variable. Then, the itera-
tion of the ADMM is obtained as



⎧
⎪⎨

⎪⎩

xk+1
α =projxα(λ)

(
−
(∑

i<α xk+1
i +

∑
i>α xk

i + ϵk + yk
))

ϵk+1 =− 1
2

(∑
α∈A xk

α + yk
)

yk+1= 1
2

(∑
α∈A xk

α + yk
)
.

Note that ϵk and yk in the update of xk
α is redundant

because of
ϵk + yk = 0.

Thus, this is reduced to (19). In particular, when λ = λ∗,
there exists x∗

A ∈ xA(λ∗) such that (11) holds. Thus, (22)
follows. !


