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Abstract— In this paper, towards efficient state estimation
for large-scale linear systems, we propose a novel framework
of low-dimensional functional state observers, which we call
a projective state observer, with the provision of a systematic
design procedure. The projective state observer can be regarded
as a generalization of functional state observers that is defined
by means of the orthogonal projection taking into account the
system controllability/observability in a quantitative manner.
The efficiency of the proposed observer is shown through a
numerical example for a reaction-diffusion system evolving
over a directed complex network. Moreover, through this
observer design, we discuss a trade-off relation between low-
dimensionality and an observation error.

I. INTRODUCTION

With the recent developments in engineering, the archi-
tecture of systems has been more complex and larger in
scale. An appropriate state observer is needed for realizing
state feedback control of large-scale systems. However, in the
classical observer design methods, the resultant observer is
necessary to have a dimension comparable with a system to
be observed; see e.g., [1], [2], [3]. Thus, a high-dimensional
observer is inevitably required for large-scale systems. In
view of this, a design method of low-dimensional observers
is crucial to deal with large-scale systems.

As related work, some methods for designing low-
dimensional observers can be found in literature; see [4],
[5]. In these methods, a state observer is often designed
for a low-dimensional approximate model of systems that is
obtained by a model reduction technique. For example, [5]
proposes a design procedure of low-dimensional observers
by using an approximant obtained by the balanced truncation
[6]. However, in this method, the construction of approximate
models is rather heuristic because the relation between the
approximation error and observation error is not discussed
theoretically.

To discuss the observation error for low-dimensional ob-
servers theoretically, we need to take into account some dif-
ferences between the classical and low-dimensional observer
design. For example, in the case of classical observers, such
as the Luenberger-type observer, the external input, which
is applied to both system and observer, does not have any
influence on observation errors, i.e., the error dynamics is
exactly uncontrollable. On the other hand, in the case of
low-dimensional observers, the external input possibly ex-
cites observation errors, since the observer dynamics cannot
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exactly imitate the dynamical system behavior for the input
signals.

Against this background, in the first half of this paper, we
propose a novel framework of low-dimensional observers,
which we call a projective state observer. The projective state
observer can be regarded as a generalization of functional
state observers that is defined by means of the orthogo-
nal projection taking into account the system controllabil-
ity/observability in a quantitative manner. Furthermore, we
derive a tractable representation of the error system clarifying
that not only an initial state estimation error but also the input
signal and the initial value response of systems are relevant
to the observation error.

In the second half of this paper, based on the error
analysis in the first half, we propose a systematic design
procedure for projective state observers. More specifically,
we propose two types of design procedures for projective
state observers that can estimate a set of specific states given
in advance, and can estimate a kind of average behavior of
systems, respectively. The former one is effective if we want
to estimate a specific limited number of states. Although
this type of observers is proposed in [7], the approach is
different from the design procedure shown in this paper. This
is because the approach is based on observer reduction where
a reduced order observer approximates a full-state observer
for the original system.

To explain the basic concept of the latter one, let us
imagine the following situation: From a microscopic point of
view, the behavior of fluid is realized by complex interaction
among a huge number of molecules; on the other hand, from
a macroscopic point of view, we can observe only a kind of
average behavior of molecules. This fact suggests that the
estimation of average behavior is essential to control the fluid
behavior (i.e., large-scale systems) from a macroscopic point
of view.

However, it should be noted that to find a set of average
states that is suitable for the state estimation is nontrivial in
general. To find such a set of average states, we apply the
concept of clustered model reduction developed in [8], [9].
Consequently, we can design a projective state observer that
can systematically find a set of states that is desirable for
estimating the average system behavior. The efficiency of
the two design procedures for projective state observers is
shown through a numerical example for a reaction-diffusion
system evolving over a directed complex network.

This paper is organized as follows: In Section II, we
first give a mathematical formulation of projective state
observers. Furthermore, deriving a tractable representation of
the error system, we clarify differences between the design



of classical functional state observers and that of projective
state observers. In Section III-A, we describe a road map
for systematic design of projective state observers. Then, in
Section III-B and Section III-C, we propose two design pro-
cedures of projective state observers which can estimate a set
of states and average behavior of the system, respectively. In
Section IV, we show the efficiency of the proposed methods
through a numerical example of a networked system. Finally,
concluding remarks are provided in Section V.

Notation The following notation is used:
R set of real numbers
In unit matrix of size n× n
M ≺ On (M � On) negative (positive) definiteness

of a symmetric matrix M ∈
R

n×n

M � On (M � On) negative (positive) semidefinite-
ness of a symmetric matrix
M ∈ R

n×n

im(M) range space spanned by the col-
umn vectors of a matrix M

tr(M) trace of a matrix M
‖M‖F the Frobenius norm of a matrix

M

The L2-norm of a square integrable function v(t) ∈ R
n is

defined by

‖v(t)‖L2
:=

(∫ ∞

0

vT(t)v(t)dt

) 1
2

.

The H∞-norm of a stable proper transfer matrix G and the
H2-norm of a stable strictly proper transfer matrix G are
respectively defined by

‖G(s)‖H∞ := sup
ω∈R

‖G(jω)‖,

‖G(s)‖H2
:=

(
1

2π

∫ ∞

−∞
tr(G(jω)GT(−jω))dω

) 1
2

where ‖ · ‖ denotes the induced 2-norm.

II. FUNDAMENTALS OF PROJECTIVE STATE OBSERVERS

A. Preliminary Review of Functional State Observers

In this paper, we deal with the n-dimensional linear system
described by

Σ :

{
ẋ = Ax+Bu
y = Cx+Du

, x(0) = x0 (1)

where A ∈ R
n×n, B ∈ R

n×mu , C ∈ R
my×n, and D ∈

R
my×mu . To simplify the arguments, we show results for

stable systems. Similar results are available also for unstable
systems. In Σ in (1), a measurement output signal is denoted
by y ∈ R

my . Furthermore, we define a signal to be estimated
by

z = Sx (2)

where S ∈ R
mz×n.

In this notation, let us consider the n-dimensional
(Luenberger-type) observer described by

O :

{
˙̂x = Ax̂+Bu+H(y − ŷ)
ŷ = Cx̂+Du

, x̂(0) = x̂0 (3)

where the observer gain H ∈ R
n×my is a design parameter.

As being compatible with (2), we define the estimation of z
by

ẑ = Sx̂. (4)

In what follows, O is referred to as a functional state observer
[2], [3] since z and ẑ are defined as functions of x and x̂.

By denoting the state error as e := x − x̂, we obtain the
error system with this functional state observer as

E :

{
ė = (A−HC)e
Δ = Se

, e(0) = e0 (5)

where
Δ := z − ẑ, e0 := x0 − x̂0

denote the observation error and the initial state error,
respectively. Note that the observation error is a function
of e0, namely

Δ = Δ(t; e0). (6)

Usually, we design the observer gain H so that this error
system has a desirable behavior. To regulate a convergence
rate of observation errors, for a given constant δ ≥ 0, one
can design H such that

sup
e0 �=0

‖Δ(t; e0)‖L2

‖e0‖ ≤ δ. (7)

In the next subsection, we define a lower-dimensional func-
tional observer as a generalization of this n-dimensional
functional state observer.

B. Error Analysis of Projective State Observers

In this subsection, for Σ in (1), we define an n̂-dimensional
functional state observer as a generalization of O in (3). More
specifically, by means of the orthogonal projection [6], we
define the n̂-dimensional functional state observer by

OP :

{
˙̂x = PAPTx̂+ PBu+H(y − ŷ)
ŷ = CPTx̂+Du

, x̂(0) = x̂0

(8)
where the observer gain H ∈ R

n̂×my and the projection ma-
trix P ∈ R

n̂×n satisfying PPT = In̂ are design parameters.
Without loss of generality, we assume n̂ ≤ n. Similarly to
(4), we define the estimation of z in (2) by

ẑ = SPTx̂. (9)

In the rest of this paper, we refer to this functional state
observer OP as a projective state observer.

To analyze the observation error for this projective state
observer, we derive a tractable representation of the error
system as follows:



Theorem 1: Let Σ in (1) be given with S in (2). Define
OP as in (8), and let ΔP := z − ẑ with z and ẑ defined as
in (2) and (9). Then, it follows that

EP :

{
ξ̇ = Aξ + Bu

ΔP = Sξ , ξ(0) =

[
e0
x0

]
(10)

where
e0 := Px0 − x̂0 (11)

and

A :=

[
PAPT −HCPT (PA−HC)(In − PTP )

0 A

]

B :=

[
0
B

]
, S :=

[
SPT S(In − PTP )

]
.

Proof: By taking a state as X̂ := [x̂T xT]T, we have{
˙̂X = ÂX̂ + B̂u

ΔP = ŜX̂ , X̂ (0) =

[
x̂0

x0

]

where

Â :=

[
PAPT −HCPT HC

0 A

]

B̂ :=

[
PB
B

]
, Ŝ := [−SPT S].

Define

T :=

[ −In̂ P
In

]
= T−1.

From the similarity transformation of T ÂT−1, T B̂ and
ŜT−1, the claim follows.

From Theorem 1, we notice that EP in (10) corresponds
to a generalized representation of the error system E in (5).
This is because, if P = In, we have

A =

[
A−HC 0

0 A

]
, B =

[
0
B

]
, S =

[
S 0

]
and

ξ(0) =

[
e0
x0

]
, e0 = x0 − x̂0.

Furthermore, it should be emphasized that ΔP in (10) is a
function of not only e0 but also x0 and u, namely

ΔP = ΔP (t; e0, x0, u), (12)

which is clearly contrasted with Δ in (6) for the traditional
functional state observer. An intuitive explanation on these
error factors is as follows:

(i) the error due to the initial state error e0 defined as
in (11),

(ii) the error amplified by the initial value response of
Σ, i.e., y = CeAtx0, and

(iii) the error amplified by the dynamical discrepancy
of Σ and OP for the external input u.

In conclusion, we see that the error factors (i), (ii) and (iii)
should be taken into account for the design of projective state
observers.

III. DESIGN OF PROJECTIVE STATE OBSERVERS

A. A Road Map for Systematic Design

In what follows, we aim to find the design parameters P
and H in (8) so that the observation error due to (i), (ii) and
(iii) are suppressed as much as possible. Since the dynamics
of the error system is linear, we can represent each error
factor as

ΔP (t; e0, 0, 0), ΔP (t; 0, x0, 0), ΔP (t; 0, 0, u).

For the first one, similarly to (7), we consider regulating the
convergence rate of the initial state error by introducing the
index of

sup
e0 �=0

‖ΔP (t; e0, 0, 0)‖L2

‖e0‖ ≤ δ (13)

with a given constant δ ≥ 0.
Next, to see the effect of x0 and u more explicitly,

supposing that e0 = 0, we derive the Laplace domain
representation of the observation error due to the second and
third factors as

Δ̂P (s;x0, u) := ΞP,H(s)XP (s;x0, u) (14)

where

ΞP,H(s) := CΞ(sIn̂ −AΞ)
−1BΞ +DΞ (15)

with

AΞ := PAPT −HCPT, BΞ := (PA−HC)P
T

CΞ := SPT, DΞ := SP
T

and

XP (s;x0, u) := P (sIn −A)−1[x0 +Bu(s)] (16)

with an orthogonal complement P ∈ R
(n−n̂)×n of P ∈

R
n̂×n such that

PTP + P
T
P = In. (17)

From this expression, we can expect that the observation
error due to the second and third factors will be small if the
norms of ΞP,H and XP are small enough.

However, it should be noted that simultaneous design
of P and H is difficult because ΞP,H involves the design
parameters in a bilinear fashion. To overcome this difficulty,
we exploit the following facts:

• The parameter H appears in the system ΞP,H , but not
in XP .

• The system XP involves the parameter P (or equiva-
lently P ), but not H .

• By a suitable choice of P , we can vanish DΞ in (15),
which may directly increase the norm of ΞP,H .

Based on these facts, we first find P that minimizes the norm
of XP with the constraint of DΞ = 0, and then find H that
minimizes the norm of ΞP,H . Taking this road map for the
projective state observer design, we provide the following
result:



Theorem 2: Let Σ in (1) be given with S in (2). For a
constant α ≥ 0, define Φ � On such that

AΦ+ ΦAT +BBT + αIn = 0. (18)

Furthermore, take P ∈ R
n̂×n such that

im
(
ST
) ⊆ im(PT), PPT = In̂ (19)

and
tr(Φ)− tr(PΦPT) ≤ ε. (20)

If there exist

γ > 0, X � On̂, Y ∈ R
n̂×my

such that X ≺ δ2In̂ and[
sym(XPAPT − Y CPT) + PSTSPT ∗

PATPTX − PCTY T −γIn−n̂

]
≺ On

(21)
where sym(M) := M +MT and P ∈ R

(n−n̂)×n satisfying
(17), then OP in (8) with

H = X−1Y (22)

satisfies (13) for any x0 ∈ R
n and x̂0 ∈ R

n̂, and

‖ΔP (t; 0, 0, u)‖2L2
+ α‖ΔP (t; 0, x0, 0)‖2L2

≤ γε (23)

for the unit impulse input u and x0 ∈ R
n such that ‖x0‖ = 1,

where e0 and ΔP are defined as in (11) and (12).
Proof: First, we evaluate ‖ΔP (t; 0, 0, u)‖2L2

for the
impulse input u. Based on the error system expression in
(14), we have

‖ΔP (t; 0, 0, u)‖2L2
≤ ‖ΞP,H(s)‖2H∞‖P (sI −A)−1B‖2H2

where ΞP,H is defined as in (15). Substituting (22) into (21),
we have[
sym(XPAPT −XHCPT) + PSTSPT ∗

PATPTX − PCTHTX −γIn−n̂

]
≺ On.

(24)
Note that the first condition in (19) guarantees

DΞ = SP
T
= 0.

Thus, from the bounded-real lemma [10], (24) guarantees
‖ΞP,H(s)‖H∞ < γ. Note that there exists Φ(1) � On

satisfying
AΦ(1) +Φ(1)AT +BBT = 0

for the stable system Σ. Using ‖P (sI − A)−1B‖2H2
=

tr(PΦ(1)P
T
), we have

‖ΔP (t; 0, 0, u)‖2L2
≤ γtr(PΦ(1)P

T
).

Next, we evaluate ‖ΔP (t; 0, x0, 0)‖2L2
. Note that there exists

Φ(2) � On satisfying AΦ(2)+Φ(2)AT+In = 0. Thus, using

x0x
T
0 � In (25)

for any x0 ∈ R
n such that ‖x0‖ = 1, we have ‖P (sI −

A)−1x0‖2H2
≤ tr(PΦ(2)P

T
). Therefore

‖ΔP (t; 0, 0, u)‖2L2
+ α‖ΔP (t; 0, x0, 0)‖2L2

≤ γtr
(
P (Φ(1) + αΦ(2))P

T
)
.

From the Lyapunov theorem [11], Φ given in (18) satisfies
Φ = Φ(1) + αΦ(2). In addition, the condition in (20) yields

tr
(
P (Φ(1) + αΦ(2))P

T
)
≤ ε.

Thus, (23) follows. Finally, we show (13). To describe the
time evolution of η(t) := ΔP (t; e0, 0, 0), we consider the
system given by{

ė = (PAPT −HCPT)e
η = SPTe

, e(0) = e0.

From (1, 1) block of (21), this system admits a Lyap-
nov function V (e) := eTXe such that V̇ (e(t)) <
−ηT(t)η(t). Integrating this inequality over [0,∞) and uti-
lizing V (e(∞)) = 0, we have

‖η(t)‖2L2
< V (e(0)) ≤ ‖e0‖2‖X‖2

for any e0 ∈ R
n̂. Hence, (13) follows from X ≺ δ2In̂.

Theorem 2 provides an explicit error bound for projective
state observers. As shown in the proof of this theorem, we
measure the effect of u in terms of the H2-norm, with similar
results available for the case of the H∞-norm. One possible
approach to find P in the H∞-norm evaluation is system
tridiagonalization; see [8] for details.

B. Design of Projective State Observers for Specific State
Estimation

In this subsection, we propose a procedure to construct
a projective state observer with S given in advance. This
projective state observer estimates a subset of the state-space
of Σ, which is specified by z in (2). Such a projective state
observer is efficient when we want to estimate a limited
number of states, as in the use of traditional functional state
observers.

In this situation, we can find P ∈ R
n̂×n such that (19)

and (20) in the following manner: First, we find the set
{(λi, vi)}i∈{1,...,n} of all eigenpairs of Φ, supposing that
λi ≥ λi+1 and ‖vi‖ = 1 without loss of generality. Next,
we find minimum k ∈ {1, . . . , n} such that

λk+1 + · · ·+ λn ≤ ε (26)

and construct V = [v1, . . . , vk] ∈ R
n×k. Finally, by the

Gram-Schmidt process, we derive P such that

im(PT) = im([V, ST]). (27)

Based on this, supposing that Σ in (1) with S in (2) is given,
we summarize the design procedure of an n̂-dimensional
projective state observer OP such that (13) and

‖ΔP (t; 0, 0, u)‖2L2
+ α‖ΔP (t; 0, x0, 0)‖2L2

≤ ρ (28)

where ρ ≥ 0 is a design parameter.
1) Fix an initial value of ε ≥ 0.
2) Find P ∈ R

n̂×n such that (19) and (20) by the
procedure above.

3) For a given δ, solve (21) while minimizing γ where P
is constructed by Gram-Schmitt process.



4) If (21) is infeasible or ρ < γε, then take larger δ and ρ
and back to 2).

5) Compute H by (22) and construct a low-dimensional
functional observer OP in (8).

It should be noted that since the number of decision variables
of LMI given by (21) is 1

2 n̂(n̂ − 1) + n̂my , this design
procedure is computationally tractable if n̂ is small.
C. Design of Projective State Observers for Average State
Estimation

In this subsection, we construct a projective state observer
with S in (2) given by

S = P. (29)

This implies that S is also a design parameter of projective
state observers. In this setting, the condition in (19) is
automatically satisfied. Furthermore, z and ẑ in (2) and (9)
are clearly given by z = Px and ẑ = x̂. It should be
emphasized that, unless we impose a meaningful structure
on P , the estimated signal ẑ has no physical meaning.
To accomplish the state estimation in a suitable sense, we
impose the following block-diagonal structure on P :

Definition 1: The family of an index set {I[l]}l∈L for L :=
{1, . . . , L} is called a cluster set, whose element is referred
to as a cluster, if each element I[l] is a disjoint subset of
{1, . . . , n} and it satisfies⋃

l∈L

I[l] = {1, . . . , n}.

Then, an aggregation matrix compatible with {I[l]}l∈L is
defined by

P := diag(p[1], . . . , p[L])Π ∈ R
L×n (30)

with the permutation matrix

Π := [enI[1]
, . . . , enI[L]

]T ∈ R
n×n, enI[l]

∈ R
n×|I[l]| (31)

and p[l] ∈ R
1×|I[l]| such that ‖p[l]‖ = 1.

Based on this notion of clustering, the authors have solved
a structured model reduction problem for networked systems
in [8], [9]. Note that, if P has the specific structure shown
in (30), then the estimated signal ẑ can be interpreted as a
weighted average of states of Σ. In particular, if p[l] is in the
form of

p[l] =
[1, . . . , 1]

‖[1, . . . , 1]‖ ∈ R
1×|I[l]|, (32)

then ẑ corresponds to an average state in the sense of

zl =
1√|I[l]|

∑
∀i∈I[l]

xi, l ∈ L (33)

where zl (resp. xi) is the lth element of z (resp. the ith
element of x). A method to achieve usual averaging is
described in Remark 1. In what follows, for simplicity, we
only consider the case of (32).

By the design procedure same as in Section III-B, let
us construct a projective state observer that estimates the

average behavior of systems. To this end, we can use the
following fact:

Lemma 1: Let Σ in (1) be given, and define Φ � On such
that (18) for a constant α ≥ 0. If, for each l ∈ L, there exists
a row vector φ[l] ∈ R

1×n such that∥∥∥(enI[l]
)TΦ 1

2
− pT[l]φ[l]

∥∥∥
F
≤ |I[l]| 12 θ (34)

where p[l] ∈ R
1×|I[l]| satisfying ‖p[l]‖ = 1 and Φ 1

2
denotes

a Cholesky factor such that Φ = Φ 1
2
ΦT

1
2

, then it follows that

tr(Φ)− tr(PΦPT) ≤ θ2
(∑L

l=1|I[l]|(|I[l]| − 1)
)

where P is defined as in (30).

Proof: See [9].

This lemma shows that, if we find a cluster set {I[l]}l∈L

such that (34), then the value of ε in Theorem 2 can be taken
as

ε = θ2
(∑L

l=1|I[l]|(|I[l]| − 1)
)
.

Remark 1: The estimated signal z given by S and P in
(29) and (30) with (32) implies an average state in the sense
of (33). Alternatively, if we take

S = DP, D := diag

(
1√|I1|

, . . . ,
1√|IL|

)
∈ R

L×L

(35)
then z implies an average state in the sense of

zl =
1

|I[l]|
∑

∀i∈I[l]

xi, l ∈ L. (36)

IV. NUMERICAL SIMULATION

In this section, we show the efficiency of the proposed pro-
jective state observer through a numerical example. We deal
with a 1000-dimensional reaction-diffusion system evolving
over a complex network model, called the Dorogovtsev
model [12].

First, we show the design result of a projected state
observer for the specific state estimation proposed in Sec-
tion III-B. Let the input signal u ∈ R

5 be applied to
the states of some five nodes, and the measurement output
signal y ∈ R

10 is obtained as the states of some 10 nodes.
Moreover, the evaluation output z ∈ R

20 is given as the states
of some 20 nodes, which are different from the measurement
output nodes. Based on the procedure shown in Section III-
B, P and H in (8) are constructed for several values of ρ
while taking α = 0 and δ = 2.0. Note that we are required
to take at least n̂ ≥ 20 to satisfy (19) in this setting.

In Fig. 1, we plot the resultant dimension of projective
state observers versus the value of ρ in (28). Furthermore,
Fig. 2 shows the resultant performance of the input response
ΔP (t; 0, 0, u) versus the value of ρ in (28). In addition,
the resultant performance of the initial state error are about
2.0 for all ρ. These results show that there is a trade-off
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Fig. 3. Trajectories of z and ẑ.

relation between the estimation performance and the low-
dimensionality of observers. Namely, the estimation per-
formance is improved in compensation for increasing the
dimension of observers.

Next, we verify the estimation performance of projective
state observers by comparing z(t) with ẑ(t). In Fig. 3, we
plot only three elements of z and ẑ since the other elements
behave similarly. To obtain this figure, a random input signal
is applied over t ∈ [20, 80] and x0 is given randomly and
ξ̂0 = 0. The resultant dimension of the projective state
observer is n̂ = 47. From this figure, we can confirm that
the observation error relevant to both input and initial state
response are small.

Finally, we show the design result of projective state
observers for average state estimation proposed in Section
III-C. The observer is constructed by the procedure shown
in Section III-B while taking α = 0, δ = 5.0 and ρ = 4.3.
In addition, S is constructed by (35), which implies that z
estimates an average state in the sense of (36). The resultant
dimension of the obtained observer is n̂ = 5, which implies
that the resultant number of clusters is L = 5. In Fig. 4, we
plot all trajectories of x and ẑ where a random input signal
is applied over t ∈ [0, 140]. The legends are as follows:
the trajectory of ẑ is depicted by the dotted lines with the
circles where ẑl is color-coded according to l ∈ {1, . . . , 5}.
In addition, xi for each i ∈ I[l] is also color-coded according
to its cluster index l ∈ {1, . . . , 5}. From this figure, we can
confirm that each trajectory of five elements of ẑ is around
the center of colored trajectory sets of x. Moreover, the
resultant estimation error is ‖z− ẑ‖2L2

= 1.3× 10−2, which
implies that ẑ estimates an average state in the sense of (36)
efficiently. As demonstrated in this numerical example, the
proposed projective state observer can efficiently find and
estimate the average behavior of networked systems.

V. CONCLUSION

In this paper, we proposed a novel framework of low-
dimensional functional state observers, called projective state
observers. In addition, deriving a tractable representation of
the error system, we clarified differences between the design
of classical functional state observers and that of projective
state observers. Based on the error analysis, we provided a
systematic design procedure. For two types of projective state
observers: the first can estimate a set of states of the system
and the second can find and estimate the average behavior
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Fig. 4. Trajectories of ẑ and x.

of systems. The efficiency of the proposed design procedure
is shown through a numerical simulation.
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