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Abstract—Large-scale penetration of photovoltaic (PV) power
generators and storage batteries is expected in recently con-
structed power systems. For the realization of smart energy
management, we need to make an appropriate day-ahead sched-
ules of power generation and battery charge cycles based on the
prediction of demand and PV power generation, which inevitably
involves nontrivial prediction errors. With this background, a
novel framework is proposed to maintain the balance among
the total amounts of power generation, demand, and battery
charging power with explicit consideration of the prediction
uncertainty assuming that consumer storage batteries are not
directly controllable by a supplier. The proposed framework
consists of the following three steps: (I) the day-ahead scheduling
of the total amount of generation power and battery charging
power, (II) the day-ahead scheduling of utility energy consump-
tion requests to individual consumers, which aim to regulate
battery charging cycles on the consumer side, and (III) the
incentive-based management of the entire power system on the
day of interest. In this paper, we especially focus on the day-ahead
scheduling problems in Steps (I) and (II) and show that they
can be analyzed in a manner originating from spatiotemporal
aggregation. Finally, we demonstrate the validity of the proposed
framework through numerical verification of the power system
management.

Index Terms—Photovoltaic Power Generation, Prediction
Uncertainty, Spatiotemporally Multiresolutional Optimization,
Supply-Demand-Storage Balancing.

I. INTRODUCTION

A. Background

THE reduction in greenhouse gas emission has been recog-
nized as a long-term goal in the global society as typified

by, e.g., the declaration at the G8 Toyako Summit in 2008 [1].
For the realization of such a global goal, the use of renewable
energy sources such as photovoltaic (PV) power generation
has been gathering attention as an efficient solution technology
worldwide. For example, large-scale penetration of PV power
generators into the houses of consumers is expected by 2030
in Japan such that the total amount of PV power generation
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covers approximately 50% of the peak power consumption as
well as 10% of the entire energy consumption [2].

It is well known that the existing power system possibly
confronts several critical issues due to the large-scale pene-
tration of PV power generators. The major issues include the
deviation from an allowable frequency range, which can be
caused when the total amount of power generation including
PV power generation exceeds the total amount of power
consumption by consumers. One approach to handle this issue
is to discard the surplus PV power generation; however, this
is not necessarily efficient from the viewpoint of smart energy
management. As another approach, the installation of storage
batteries has the potential to use the surplus effectively. Note
that it is desirable to introduce storage batteries to individual
consumers with PV power generators in order to prevent
reverse power flow into the grid. In the following, we use
the term “demand” to represent the amount of power obtained
by subtracting the amount of PV power generation from the
amount of power consumption by consumers.

In this paper, we aim to develop a framework to maintain the
balance among the total amounts of power generation, demand,
and battery charging power in a power system involving a
large number of PV power generators and storage batteries.
We assume that every consumer has a PV power generator
and storage battery, whereas the supplier side has no PV
power generators and storage batteries. Throughout this paper,
we refer to this type of supply-demand balance as “supply-
demand-storage balance.” In this framework, we determine the
day-ahead schedules of power generation and battery charge
cycles according to the prediction of demand to manage the
power system efficiently.

In detail, we first consider the case where demand prediction
can be exactly performed, i.e., no prediction uncertainty exists.
By definition, the total amount of demand should be equal
to the sum of the total amounts of power generation and
battery discharging power, which originate from the supply
and consumer sides, respectively. This equality implies that
a supplier can automatically obtain the scheduling of the
total number of battery charge cycles from that of the total
power generation as long as the demand prediction is ideally
performed. However, even in such an ideal situation, the
storage batteries are not necessarily charged in compliance
with the scheduling of the total number of battery charge
cycles, as expected on the supplier side, because the total
battery charge cycles in the consumer side cannot be controlled
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Fig. 1. Proposed framework for supply-demand-storage balance.

directly by the supplier. In addition to this difficulty, it is
obvious that exact demand prediction is not realistic owing
to the steep fluctuations in PV power generation [3], [4], [5],
and the idiosyncratic behavior of individual consumers.

With this background, we propose a framework to maintain
the supply-demand-storage balance, in which a load dispatch-
ing center provides some requests to individual consumers,
which aim to regulate battery charge cycles on the consumer
side. In our framework, it is crucial to determine the day-
ahead schedules of power generation as well as the requests
to consumers while explicitly considering the uncertainty of
demand prediction and the idiosyncratic behavior of individual
consumers.

B. Proposed Framework

In this subsection, we explain the framework needed to real-
ize the supply-demand-storage balance with the background in
Section I-A. In detail, we first consider the two-layered power
system depicted at the top of Fig. 1. Our framework consists of
the following three steps: (I) the day-ahead scheduling of the
total amount of power generation, which subserviently yields
the scheduling of the total number of battery charge cycles,
(II) the day-ahead scheduling of utility energy consumption
requests to individual consumers, which aim to regulate battery
charge cycles on the consumer side, and (III) the incentive-
based management of the entire power system on the day
of interest. In what follows, we formulate these steps in a
discrete-time setting, where the term “utility power” is used
to represent the amount of power at a power-receiving point
of consumer’s home, and its integral is referred to as “utility
energy.”

In Step (I), the day-ahead schedules of total power genera-
tion and battery charge cycles are determined on the basis of
the day-ahead prediction of the total amount of demand. Note

that the total demand, depicted in Fig. 1(b), is given by the
spatial aggregation of the demand of individual consumers,
depicted in Figs. 1(a-1) and (a-2). Thus, we can expect that
the uncertainty of the spatially aggregated demand prediction
consisting of PV power generation and power consumption
becomes smaller than that with respect to each consumer.
Owing to such an effect, known as the smoothing effect [6],
[7], the resulting power generation schedule and battery charge
cycles, depicted in Figs. 1(c) and (d), respectively, can be
determined in a manner that is robust against the prediction
uncertainty.

In Section II-B, we will mathematically formulate this
scheduling problem of total power generation, denoted as
Problem 1, on the basis of the premise that the predicted
demand is given as a stochastic variable. It should be noted
that the scheduling of the total number of battery charge cycles
is not required in a conventional power system, where PV
power generators and storage batteries have not sufficiently
penetrated. Because the schedule of total power generation
in Fig. 1(c) can be regarded as the total power consump-
tion (or total load) in a conventional power system, we can
subsequently perform the detailed scheduling of individual
generators after determining it. For example, unit commitment
and economic dispatch control can be applied with a time step
that is commensurate with the economic dispatch process in
the time range of interest, e.g., from 1/6 [h] to 1 [h].

In Step (II), a load dispatching center determines the
schedule of utility power consumption requests to individual
consumers on the basis of the prediction of PV power gen-
eration and power consumption of individual consumers as
well as the resulting power generation schedule in Step (I).
This aims to regulate battery charge cycles on the consumer
side. Note that the requests should be reasonable in the
sense that individual consumers can naturally follow them,
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namely, a degree of freedom with respect to the utility power
consumption should be reasonably ensured for each consumer.
In view of this, we consider determining these requests as
utility energy consumption requests, i.e., requests of the utility
power consumption averaged over a relatively long period, as
depicted in Fig. 1(e), which subserviently yield the battery
charging energy requests in Fig. 1(f). Such requests indeed
involve a degree of freedom with respect to the utility power
consumption because individual consumers can consume their
utility power within the limits of an energy regulation. Note
that a load dispatching center regulates only the amount of
temporally aggregated utility power consumption. The use
of temporally aggregated demand prediction, having good
compatibility with the request of utility energy consumption,
allows us to reduce the prediction uncertainty, similar to the
aforementioned spatial aggregation.

In Section II-C, we will formulate this scheduling problem,
denoted as Problem 2, on the basis of the premise that a
power generation schedule is determined in Step (I). Further-
more, we will formulate an optimization problem originating
from spatiotemporal aggregation, denoted as Problem 3, in
Section III to analyze the degree of prediction uncertainty
relaxation via spatial and temporal aggregation in Steps (I)
and (II). This formulation enables us to perform a robustness
analysis of the power generation and request scheduling in a
unified manner. Moreover, it enables a generalization of our
framework to multilayered power systems involving several
electrical substations.

In Step (III), we manage the entire power system according
to the resulting schedules of total power generation in Step
(I) and utility energy consumption requests to individual con-
sumers in Step (II). In detail, we suppose that the utility power
consumption of each consumer, depicted in Fig. 1(g), results in
compliance with the corresponding utility energy consumption
request in each time interval, depicted in Fig. 1(e). In the
same manner, the battery charge cycles of each consumer
result in Fig. 1(h). The utility power consumption and battery
charge cycles of each consumer yield their totals for all
consumers in Figs. 1(i) and (j), which are expected to be
close to the scheduled ones depicted in Figs. 1(c) and (d).
Such an expectation would be reasonable if the behavior of
each consumer is sufficiently disperse. The closeness between
the total utility power consumption and the schedule of total
power generation implies that only a small regulating capacity
is required to compensate for their difference, i.e., to maintain
the supply-demand-storage balance.

In general, consumers do not necessarily follow the utility
energy consumption requests from the load dispatching center.
A possible way to make consumers follow the requests would
be to provide an incentive to consumers or to implement a
billing system in which power bills are calculated on the basis
of the deviation from the requests. However, the determination
of a rigorous incentive or billing system is not necessarily easy
because it requires a detailed consumer model that captures the
behavior with regard to incentives or power bills, which would
require vast experiments with real consumers to construct. On
the other hand, our framework has a potential to be adapted
to many types of incentive or billing systems. In view of

this, we qualitatively investigate via the numerical verification
in Section IV what types of them make the utility energy
consumption requests reasonable in the sense that the total
amount of actual utility power consumption is made closer to
the optimal schedule of total power generation.

In terms of a smart grid, we suppose that the prediction of
PV power generation and power consumption as well as the
information on storage batteries, such as the inverter capacity
and initial battery energy, are available for scheduling of the
total power generation and battery charge cycles. In addition,
we suppose that a home energy management system performs
an optimization with respect to incentives or power bills
determined on the basis of the deviation from utility energy
consumption requests.

C. Related Work

In this paper, we deal with the uncertainty of demand
prediction in a stochastic manner and formulate the day-
ahead scheduling problems in terms of chance constrained
optimization. In fact, a number of studies on stochastic op-
timization can be found in the literature. For example, [8]
addresses a chance constrained optimization problem to find
the optimal power flow, and [9] and [10] address problems of
stochastic unit commitment. In these papers, the uncertainty
of wind power generation is expressed as a stochastic variable.
However, the problem formulation in the first paper does not
consider the use of storage batteries, whereas the formulations
in the second and third papers only consider the case in
which storage batteries can be directly controllable from
the supplier side. By assuming directly controllable storage
batteries, [11] similarly develops a method of model predictive
control for battery charge cycles with the stochastic modeling
of uncertain renewable energy sources. Note that our problem
formulation is different because it is based on the premise that
battery charging cycles on the consumer side are not directly
controllable from the supplier side.

On the other hand, several studies on the control of the
aggregated amount of consumer-side quantities such as power
consumption can also be found in the literature. For example,
[12] addresses a demand control problem in which the on–
off switching of deferrable appliances is applied to the peak
shift in the total demand. In a similar work, [13] analyzes
the supply-demand balance with regard to the total amount of
deferrable demand as a type of an energy storage. The concept
in both papers is based on utilizing the aggregated amount
of deferrable (flexible) demand, which is assumed to be fully
controllable by the supplier side (or an organizer). This clearly
contrasts with our concept based on the idea that the small
dispersion of consumer-side quantities is imperceptible to the
supplier side owing to spatiotemporal aggregation, exemplified
as a smoothing effect. From this viewpoint, we propose a
method to determine low temporal resolution requests to
individual consumers assuming that the storage batteries in the
consumer side are not directly controllable, which can ensure
a degree of freedom with respect to utility power consumption
and battery charge cycles.

In [14], the authors have developed basic mathematical tools
for solving and analyzing the chance constrained optimization
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problem based on spatial and temporal aggregation. How-
ever, their practical interpretation and relation to the supply-
demand-storage balancing are not thoroughly discussed. In
contrast, this paper aims to construct a practical framework to
maintain the supply-demand-storage balance while providing
a detailed implementation procedure. Moreover, we provide a
unified problem formulation originating from spatiotemporal
aggregation.

D. Organization

The reminder of this paper is structured as follows. In
Section II-A, we first introduce a mathematical model of the
temporal variation in battery charging energy and then formu-
late the scheduling problems for the total power generation
and utility energy consumption requests in Sections II-B and
II-C, respectively. In Section III-A, we formulate a unified
optimization problem originating from spatiotemporal aggre-
gation. Then, we theoretically show the positive effect of
spatiotemporal aggregation for robustness against the pre-
diction uncertainty of demand in Section III-B. Section IV
is devoted to a demonstration of the proposed framework
via a numerical simulation. Finally, concluding remarks are
provided in Section V.

II. PROBLEM FORMULATION

A. Mathematical Model

First, we introduce a mathematical model of the power
systems discussed in this paper. Let

T := {0, . . . , T − 1} (1)

be the time horizon of interest, and suppose that the time
length T satisfies

T = 24/κ (2)

where κ [h] is a size of the time step. Furthermore, let n be the
number of consumers with PV power generators, and denote
the amount of power consumption and PV power generation
at time t by pt ∈ R

n and p′t ∈ R
n, respectively. Then, we

define the net amount of demand at time t by

dt := pt − p′t ∈ R
n, (3)

which may have negative elements. Furthermore, assuming
that every consumer has a storage battery, we model the
temporal variation in the battery energy by

xt+1 = xt + κ(vt − dt), t ∈ T (4)

where xt ∈ R
n and vt ∈ R

n denote the battery energy and the
utility power consumption of consumers at time t, respectively.
Note that κ satisfies (2), and the initial battery energy x0 is
supposed to be a fixed constant. The difference equation in (4)
represents the energy originating from the deviation between
the utility power consumption and the demand to be charged
into each storage battery.

B. Scheduling Problem of Total Power Generation

In this subsection, we formulate a scheduling problem for
the total amount of power generation while explicitly consider-
ing the prediction uncertainty of demand. This problem is to be
solved at Step (I) in our framework mentioned in Section I-B,
and it corresponds to Fig. 1 (I).

We model dt in (3) as a stochastic variable. In particular,
we consider the predicted demand as a normally distributed
variable, namely

d = [dt]t∈T ∼ N (d,Σ), d := [dt]t∈T ∈ R
nT . (5)

Note that the mean value of d is given to comply with
dt, and its covariance matrix is given by the symmetric
positive semidefinite matrix Σ ∈ R

nT×nT , which reflects the
uncertainty of demand prediction. In this paper, the magnitude
of Σ is supposed to be large in the sense of its norm. In the
following, we express stochastic variables in boldface, e.g., d.

For the predicted demand d in (5), the total amount of
predicted demand is given by

D := [Dt]t∈T ∈ R
T , Dt := 1T

ndt, (6)

which can be regarded as the spatial aggregation of each dt.
Note that the temporal sequences of dt and Dt correspond to
the plots in Figs. 1(a) and (b), respectively. For compatibility
with (4), the temporal variation in the total amount of battery
energy can be expressed as

Xt+1 = Xt + κ(Vt −Dt), t ∈ T (7)

where Xt ∈ R denotes the total battery energy, whose initial
value is given as X0 = 1T

nx0, and Vt ∈ R denotes the total
amount of power generation, whose temporal sequence is to
be determined. Note that the size of a time step κ should be
small enough to obtain an appropriate schedule valid for real-
time balancing. In particular, κ should be commensurate with
the economic dispatch process of interest in the range, e.g.,
from 1/6 [h] to 1 [h]. Furthermore, Xt should be a stochastic
variable because Dt is.

Next, we give a cost function that evaluates the fuel cost
of the generators and the deterioration of the storage batteries
due to discharging. In the rest of this paper, similar to D in
(6), we use the following notation:

V := [Vt]t∈T ∈ R
T , X := [Xt]t∈T ∈ R

T .

Furthermore, the total amount of battery charging power is
denoted as

ΔX := [ΔXt]t∈T ∈ R
T , ΔXt :=

1

κ
(Xt+1 −Xt) . (8)

In this notation, we express the cost function as

J(V ; ΔX) :=

T−1∑
t=0

{
f(Vt) + E [g(ΔXt)]

}
(9)

where f(·) and g(·) are convex functions that evaluate the
fuel cost of the generators and the deterioration cost of the
storage batteries caused by discharging, respectively. Their
specification will be described in Section IV devoted to a
numerical verification. In this cost function, for simplicity, the
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total fuel cost of multiple generators and the total deterioration
cost of multiple storage batteries are approximately evaluated
as those of average generators and storage batteries, although
it is possible to enhance the evaluation to account for the
varieties of the generators and storage batteries.

We define a constraint condition that represents some phys-
ical limitation. Taking into account the stochastic aspect of X,
the constraint condition is given as a set of chance constraints
[15], [16], [17]. To this end, we use the following notation:

Π(x; I, ε) := (Pr(x ≥ I) ≥ 1− ε) ∧ (
Pr(x ≤ I) ≥ 1− ε

)
where I = [I, I] and ε ∈ (0, 1) denote an interval and a
violation rate, respectively. This constraint of Π implies that
the probabilities of both x ≥ I and x ≤ I must be equal or
greater than 1−ε. Then, we impose a set of chance constraints
on X as{

Π(Xt; I1, ε1), Π(ΔXt; I2, ε2), ∀t ∈ T

Π(XT ; I3, ε3). (10)

The constraints in the first line restrict the total amount of
battery energy and battery charging power to their maximum
and minimum limits, described by the intervals I1 and I2.
The constraint in the second line is given so that the total
battery energy XT at the terminal time t = T falls within the
desired interval I3 ⊆ I1 for the sustainable use of the storage
batteries. In addition, we impose a deterministic constraint on
V as

Vt ∈ I4, ∀t ∈ T. (11)

In this notation, the scheduling problem for the total power
generation is formulated as follows:

Problem 1: Let a predicted demand d in (5) be given. For
the system in (7) with D in (6), define the cost function as in
(9). Then, find

V ∗ := argmin
V ∈RT

J(V ; ΔX) (12)

subject to (7), (10) and (11).

In Problem 1, we formulate a problem to find the optimal
schedule of total power generation, denoted by V ∗ ∈ R

T .
Once V ∗ is found, we can subserviently obtain the optimal
schedule of the total number of battery charge cycles with (7).
These optimal schedules of total generation power and battery
charge cycles correspond to the plots in Figs. 1(c) and (d),
respectively. Even though constraints on network and security
are not considered in this problem, they can be involved in
unit commitment and economic dispatch control, applied to
the resulting schedule of total generation power.

For the development of a reliable framework to maintain
the supply-demand-storage balance, it is desired that the
optimal schedules are robust against the uncertainty of demand
prediction. Note that the prediction uncertainty is expressed as
the covariance matrix Σ of d in (5). In view of this, we can
say that the scheduling problem is robust against the prediction
uncertainty if the sensitivity of V ∗ in (12) to the magnitude of
Σ is low enough. Such a robustness analysis will be performed
in Section III-B.

C. Scheduling Problem of Utility Energy Consumption Re-
quests

In this subsection, we formulate a scheduling problem for
utility energy consumption requests to individual consumers.
This problem is to be solved at Step (II) in our framework
mentioned in Section I-B, and it corresponds to Fig. 1 (II).
We first introduce a sparse time scale T̂ as

T̂ := {0, . . . , T̂ − 1}. (13)

For this sparse time scale, we assume that there exists a natural
number τ , which represents the degree of temporal resolution,
such that

τ T̂ = T. (14)

In this sparse time scale, the size of a time step is given by

κ̂ := τκ, (15)

where κ satisfies (2).
In the following, we give a formulation to determine utility

energy consumption requests, which are provided from a load
dispatching center to consumers. The requests aim to regulate
the amount of utility energy consumption, i.e., the utility power
averaged over the period given by τ , which regulates the
battery charging energy of each consumer subserviently.

Assuming that the optimal schedule of total power gener-
ation, denoted by V ∗ in (12), is determined in advance, we
consider v̂t̂ ∈ R

n denoting the utility energy consumption
requests to all consumers at time t̂. We derive the difference
equation representing the temporal variation in battery energy
at the sparse time scale. The corresponding amount of pre-
dicted demand d in (5) is given by

d̂ := [d̂t̂]t̂∈T̂
∈ R

nT̂ , d̂t̂ :=
1

τ
(dτ t̂+· · ·+dτ(t̂+1)−1), (16)

which can be regarded as the temporal aggregation of d. In
this notation, the temporal variation in the battery energy can
be expressed as

x̂t̂+1 = x̂t̂ + κ̂(v̂t̂ − d̂t̂), t̂ ∈ T̂ (17)

where x̂t̂ ∈ R
n denotes the battery energy of all consumers

at time t̂, whose initial value is given as x̂0 = x0.
Next, similar to (10), we give a set of chance constraints

on x̂ := [x̂t̂]t̂∈T̂
∈ R

nT̂ as{
Π(x̂t̂; Î1, ε̂1), Π(Δx̂t̂; Î2, ε̂2), ∀t̂ ∈ T̂

Π(x̂T̂ ; Î3, ε̂3)
(18)

where the average charging power is denoted by

Δx̂ := [Δx̂t̂]t̂∈T̂
∈ R

nT̂ , Δx̂t̂ :=
1

κ̂

(
x̂t̂+1 − x̂t̂

)
. (19)

In addition, similar to (11), we impose deterministic inequality
constraints on v̂t̂ as

v̂t̂ ∈ Î4, ∀t̂ ∈ T̂. (20)

Furthermore, we define an objective function that evaluates
the degradation of economic efficiency. In particular, for the
temporal sequence of utility energy consumption requests
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denoted by v̂ := [v̂t̂]t̂∈T̂
∈ R

nT̂ , we define the objective
function as

Ĵ(v̂) :=
∥∥V ∗ − [1τ1

T
nv̂t̂]t̂∈T̂

∥∥2 . (21)

The meaning of Ĵ in (21) can be explained as follows: First,
we see that [1T

nv̂t̂]t̂∈T̂
∈ R

T̂ represents the temporal sequence
of the total number of utility energy consumption requests for
all consumers. Furthermore, its temporal interpolation based
on the zero-order hold is given by [1τ1

T
nv̂t̂]t̂∈T̂

∈ R
T , which

corresponds to the supposition that every consumer tries to
follow the utility energy consumption request as constant
utility power consumption in each time interval. Under this
supposition, we evaluate the discrepancy between the optimal
schedule of total power generation and the total amount of
utility energy consumption requests. Note that this discrepancy
can be regarded as a degradation in economic efficiency
because V ∗ is determined to improve economic efficiency with
respect to the total power generation and battery charge cycles.

In this notation, the scheduling problem for utility energy
consumption requests is formulated as follows:

Problem 2: Let the predicted demand d in (5) and the
optimal power generation schedule V ∗ in (12) be given. For
the system in (17) with d̂ in (16), define the objective function
as in (21). Then, find

v̂∗ := argmin
v̂∈RnT̂

Ĵ(v̂) (22)

subject to (17), (18) and (20).

In the above formulation, the parameter τ represents a
degree of freedom that allows consumers to idiosyncratically
consume utility power within the limits of an energy regu-
lation. This optimal schedule of utility energy consumption
requests corresponds to the plot in Fig. 1(e), where the
temporal interpolation based on the zero-order hold is applied
to draw. Furthermore, the scheduled requests subserviently
yield those of the battery charging energy in Fig. 1 (f).

III. ANALYSIS BASED ON SPATIOTEMPORAL

AGGREGATION

A. A Unified Formulation of the Two Scheduling Problems

In this section, we give a robustness analysis of Problems 1
and 2 in Sections II-B and II-C. To analyze the two optimiza-
tion problems in a unified manner, we introduce a general
formulation originating from spatiotemporal aggregation.

We assume that there exist natural numbers ν and n̂ such
that

νn̂ = n. (23)

For the the predicted demand d in (5), as a generalization
of (6) and (16), we define a spatiotemporally aggregated
predicted demand by

D̂ = [D̂t̂]t̂∈T̂
∼ N (D̂, Σ̂),

{
D̂ := Wd

Σ̂ := WΣWT (24)

where the spatiotemporal aggregation matrix is defined by

W :=
1

τ
diagT̂

([
diagn̂(1

T
ν ), . . . ,diagn̂(1

T
ν )
]) ∈ R

n̂T̂×nT .

(25)

Furthermore, as a unified form of (7) and (17), we express an
n̂-dimensional stochastic system as

X̂t̂+1 = X̂t̂ + κ̂(V̂t̂ − D̂t̂), t̂ ∈ T̂ (26)

where the initial value is given as X̂0 = diagn̂(1
T
ν )x0, and

V̂ := [V̂t̂]t̂∈T̂
∈ R

n̂T̂ , X̂ := [X̂t̂]t̂∈T̂
∈ R

n̂T̂

represent the spatiotemporal aggregation of the corresponding
variables. Indeed, if τ = 1 and ν = n, then (24) and (26)
coincide with (6) and (7), and if ν = 1, they coincide with
(16) and (17).

In a similar manner, for compatibility with (9) and (21), we
express a cost function as

J(V̂ ; ΔX̂) := F (V̂ ) + E[G(ΔX̂)], (27)

where F (·) and G(·) are the corresponding convex functions,
and define

ΔX̂ := [ΔX̂t̂]t̂∈T̂
, ΔX̂t̂ :=

1

κ̂

(
X̂t̂+1 − X̂t̂

)
, (28)

being compatible with (8) and (19). Moreover, the set of
chance constraints can be expressed as

Pr

⎛
⎝ai

⎡
⎣ X̂

V̂

D̂

⎤
⎦ ≤ bi

⎞
⎠ ≥ 1− δi, ∀i ∈ {1, . . . , nc} (29)

where nc represents the number of constraints, δi ∈ (0, 1)

represents the rate of violation, and ai ∈ R
1×3n̂T̂ and bi ∈ R

are coefficients compatible with (10) and (18). Finally, the
deterministic inequality constraints can be expressed as

AV̂ ≤ b (30)

where A ∈ R
m×n̂T̂ and b ∈ R

m are coefficients compatible
with (11) and (20). In this notation, we consider the following
chance constrained optimization problem:

Problem 3: Let the predicted demand d in (5) be given. For
the system in (26) with D̂ in (24), define the cost function as
in (27). Then, find

V̂ ∗ := argmin
V̂ ∈Rn̂T̂

J(V̂ ; ΔX̂) (31)

subject to (26), (29) and (30).

Problem 3 can handle Problems 1 and 2, solved at Steps (I)
and (II) in Section I-B, in a unified manner. In this formulation,
W in (25) serves as the spatiotemporal aggregation. Further-
more, the parameters ν and τ represent degrees of spatial
resolution and temporal resolution.

Note that, owing to this generalization, we can deal with
the problem of a hierarchical determination of the requests
to consumers through intermediate determination of those to
several electrical substations. To see this more clearly, we con-
sider a power system composed of three layers. Our objective
here is to determine the requests to individual consumers in
the lowest layer via the determination of requests to several
areas, i.e., clusters of consumers, in the middle layer. To this
end, we first find the optimal schedule of the total power
generation V ∗ by solving Problem 1. Then, to determine the



IEEE TRANSACTION ON SMART GRID, VOL. X, NO. X, ... 20XX 7

optimal intermediate requests V̂ ∗ to n̂ areas, each of which
includes ν consumers, we solve Problem 3 with D̂, V̂ and
X̂, which denote the spatiotemporally aggregated demand, the
intermediate requests of utility energy consumption, and the
compatible battery energy, respectively. Finally, we find the
requests to individual consumers as the solution of Problem 2
where we replace V ∗ with V̂ ∗.

B. Analysis of Robustness against Prediction Uncertainty

In this subsection, we investigate the positive effects of spa-
tiotemporal aggregation on the feasibility of Problem 3. First,
we describe the following lemma to equivalently translate
Problem 3 into a deterministic convex optimization problem
as follows:

Proposition 1: Consider Problem 3. Let D̂t̂ denote the t̂th
element of D̂ in (24), and define an n̂-dimensional model by

X̂t̂+1 = X̂t̂ + κ̂(V̂t̂ − D̂t̂), t̂ ∈ T̂ (32)

where X̂0 = diag(1T
ν )x0. Furthermore, define

V̂ := [V̂t̂]t̂∈T̂
∈ R

n̂T̂ , ΔX̂ := [ΔX̂t̂]t̂∈T̂
∈ R

n̂T̂ ,

X̂ := [X̂t̂]t̂∈T̂
∈ R

n̂T̂
(33)

where
ΔX̂t̂ :=

1

κ̂
(X̂t̂+1 − X̂t̂).

Then, for the convex function defined by

G(x) :=

∫ ∞

−∞
G(ξ)√

(2π)n̂T̂ |Σ̂|†
e−

1
2 (ξ−x)TΣ̂†(ξ−x)dξ (34)

where |Σ̂|† and Σ̂† denote the pseudo-determinant and the
Moore-Penrose pseudo-inverse of Σ̂, respectively [18], V̂ ∗ in
(31) coincides with

V̂ ∗ = argmin
V̂ ∈Rn̂T̂

(
F (V̂ ) +G(ΔX̂)

)
(35)

subject to (30), (32) and

ai

⎡
⎣ X̂

V̂

D̂

⎤
⎦ < bi − si(Σ̂, δi), ∀i ∈ {1, . . . , nc} (36)

where
si(Σ̂, δi) :=

√
2ciΣ̂cTi erf−1(1− 2δi) (37)

with

ci :=ai

⎡
⎣ κ̂M

0
In̂T̂

⎤
⎦∈R

1×n̂T̂ , M :=

⎡
⎢⎢⎢⎣
0 0 · · · 0
In̂ 0 · · · 0
...

. . .
. . .

...
In̂ · · · In̂ 0

⎤
⎥⎥⎥⎦∈R

n̂T̂×n̂T̂ .

Proof: First, from (26) with (28), we notice that ΔX̂ ∼
N (ΔX̂, Σ̂), where its mean is denoted as ΔX̂ . Thus, it follows
that

E[G(ΔX̂)] = G(ΔX).

In the following, we show the convexity of G(·). Note that
the convexity of G(·) implies that

G(xα) ≤ αG(x) + (1− α)G(x′), xα := αx+ (1− α)x′

for all x, x′ ∈ R
n̂T̂ and α ∈ [0, 1]. Thus, letting ζ := ξ − x,

we have

G(xα) =
∫∞
−∞

G(ζ+xα)√
(2π)n̂T̂ |Σ̂|†

e−
1
2 ζ

TΣ̂†ζdζ

≤ ∫∞
−∞

αG(ζ+x)+(1−α)G(ζ+x′)√
(2π)n̂T̂ |Σ̂|†

e−
1
2 ζ

TΣ̂†ζdζ

= αG(x) + (1− α)G(x′),

which shows the convexity of G(·). Furthermore, (29) is
transformed into (36) by the fact that a chance constraint
on a scalar Gaussian random variable x ∼ N (μ, σ2) can be
translated into a deterministic constraint, i.e., Pr(x < 0) < δ
if and only if μ >

√
2σ2erf−1(1− 2δ); see [17].

Proposition 1 shows that Problem 3 can be equivalently
transformed into the deterministic convex optimization prob-
lem in (35). This deterministic representation indicates that a
larger variance Σ of d in (5) makes the inequality constraint
tighter. This is confirmed by the fact that si(Σ̂, δi) in (36) is
a monotonically increasing function with respect to the norm
of Σ.

Note that si(Σ̂, δi) is a function of the spatiotemporally
aggregated variance Σ̂, as defined in (24). To see the effect
of this spatiotemporal aggregation by W more explicitly, we
derive the bounds on its magnitude as follows:

Proposition 2: Consider Problem 3 and define si(Σ̂, δi) as
in (37). If δi ∈ (0, 0.5), then

0 < si(Σ̂, δi) ≤
√

2νtr (Σ)

τ
‖ci‖ erf−1(1− 2δi) (38)

for each i ∈ {1, . . . , nc}.

Proof: From the definition of erf(·) with δi ∈ (0, 0.5),
the positivity of si(Σ̂, δi) follows. Using the fact that

tr(ABAT) ≤ ‖A‖2tr(B)

for any A ∈ R
m×n and positive semidefinite B ∈ R

n×n, we
have

si(Σ, δi) ≤
√

2tr(Σ̂)‖ci‖ erf−1(1− 2δi).

Furthermore, from WWT = ν
τ In̂T̂ , it follows that

tr(Σ̂) ≤ ν

τ
tr(Σ).

Hence, (38) follows.

We explain the meaning of Proposition 2 by focusing on
the inequality constraint on ΔX̂ in (28). Note that the chance
constraint on the ith element of ΔX̂ is equivalently translated
into (36) with ai = [0, ei,−ei], where ei denotes the ith row
of In̂T̂ . Thus, we have ‖ci‖ = 1. Because the scales of X̂, D̂
and V̂ become necessarily larger owing to the summation by
1T
ν in (25), we evaluate si(Σ̂, δi) by rescaling it as

0 <
1

ν
si(Σ̂, δi) ≤

√
2tr (Σ)

ντ
erf−1(1− 2δi), (39)

which implies that the inequality constraints in (36) can be
relaxed by spatiotemporal aggregation. Thus, we can confirm
that spatiotemporal aggregation works to expand the feasible
solution space of Problem 3.
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Fig. 2. Predicted demand and its spatiotemporal aggregation.

IV. NUMERICAL VERIFICATION

In this section, we verify the efficiency of the proposed
framework via a numerical experiment. We consider a power
system managing 200 local areas, each of which includes 800
end users having PV power generators and storage batteries.
In what follows, we regard a set of 800 end users as one
consumer. This implies that the power system includes 200
consumers, i.e., n = 200.

As the predicted demand d in (5), we use the data of
power consumption and PV power generation measured at
houses in Ohta city, Japan. In particular, the mean value d
is given as the average of five days in December 2007, and
Σ is given as the sample covariance matrix of the five days
of data. With κ = 1/6 [h] and T = 144 for (2), we plot the
temporal sequence of the first element of d, i.e., the temporal
sequence of the demand of the first out of 200 consumers,
every 10 minutes in Fig. 2(a), where the solid line depicts
its mean value d, and the color density reflects the number
of ratios for 1000 sample paths of d. The mean value and
the covariance matrix of demand for the other consumers are
derived from the corresponding data; thus they are different
from each other. In this section, the stochastic variables are
depicted in the same manner as that in Fig. 2(a). On the
basis of this demand prediction, we determine the day-ahead
schedules of power generation and utility energy consumption
requests to consumers.

A. Scheduling of Total Power Generation

We first find the optimal schedule of power generation,
denoted by V ∗ in (12). For the cost function in (9), to evaluate
the fuel cost of the generators, we give the first term by

f(x) = 5.0x2 + 2.2× 103x.

Furthermore, to evaluate the deterioration cost of the storage
batteries caused by discharging, we give the second term by

g(x) =

{ −4.6γ × 104x, x < 0
0, x ≥ 0

where γ ∈ (0, 1] is a weighting parameter to be used below.
The coefficients of f(·) are determined so as to approximate
the fuel cost functions in [2] by a quadratic function [19], and
the coefficients of g(·) are determined in compliance with the
price and durability of a standard lithium ion battery [20]. In
this formulation, γ = 1 corresponds to its current cost and

durability; thus γ < 1 represents a future situation where the
deterioration cost decreases in comparison with the current
one.

Furthermore, the initial energy of a battery for every con-
sumer, i.e., 800 end users, is given by 9.6 [MWh], i.e.,
x0 = 9.61n, which yields a total initial energy for all batteries
of 1920 [MWh], i.e., X(0) = 1920. For the limitations on
the amount of power generation, we give its upper and lower
bounds as 480 [MW] and 0 [MW], i.e., I4 = [0, 480] in (11).

Next, we fix the parameters of the chance constraints in
(10). The total battery capacity is given by 3840 [MWh], which
corresponds to the average capacity of storage batteries of 19.2
[MWh], and its lower bound is simply given by 0 [MWh],
i.e., I1 = [0, 3840]. Similarly, the upper and lower bounds
of the inverter capacity are given as 672 [MW] and −672
[MW], corresponding to the average capacity of the inverters
of 3.36 [MW], i.e., I2 = [−672, 672]. Furthermore, the lower
and upper bounds of the desired range of the battery energy
given at the terminal time are supposed to be 40% and 60%
of maximum battery energy, i.e., I3 = [1536, 2304]. For these
constraints, we assign the violation rates as ε1 = ε2 = 0.003
and ε3 = 0.35. The values of ε1 and ε2 are given to comply
with the three-sigma rule, which is often adopted in chance
constrained optimization, and the value of ε3 should be as
small as possible to make the optimization problem feasible.
Recall that the third chance constraint in (10) is given to
approximately regulate the total battery energy at the termi-
nation time. Because the uncertainty of demand prediction is
temporally integrated, i.e., pile up, over the whole day, we
cannot make ε3 small to comply with the three-sigma rule.

In Fig. 2(b), we show the temporal sequence of the spatially
aggregated predicted demand, denoted by D in (6). Comparing
Fig. 2(a) with Fig. 2(b), we can observe the smoothing effect,
i.e., the accuracy of prediction is relatively improved by spatial
aggregation. For this spatially aggregated predicted demand,
varying the value of γ ∈ (0, 1] in (9), we solve Problem 1
to find V ∗ in (12). The temporal sequence of V ∗ for each
γ ∈ {1, 0.05, 0.01} is plotted in Figs. 3(a)–(c) by the thick
solid lines. From these figures, we see that the profiles of V ∗

tend to be flatter as the deterioration cost of storage batteries
becomes lower.

B. Scheduling of Utility Energy Consumption Requests

Next, we find v̂∗ in (22) by solving Problem 2. In this
numerical experiment, we vary the degree of temporal resolu-
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Fig. 3. Power generation schedules, total amounts of utility energy consumption requests, and total amounts of utility power consumption with τ = 9.

tion as τ ∈ {4, 9, 18}, which implies that the utility energy
consumption requests to consumers are provided for each
period κ̂ of 2/3, 1.5, and 3 [h]. In Fig. 2(c), we plot the
temporal sequence of the first element of d̂ in (16) with
τ = 18, whose prediction accuracy is relatively improved
compared with that in Fig. 2(a) owing to temporal aggregation.

The parameters in Problem 2 are given as follows. The
upper and lower limits of utility energy consumption requests
are given as 2.4 [MW] and −2.4 [MW], whose negativity
represents that consumers are allowed to transfer some electric
power to the others, i.e., Î4 = [−2.41n, 2.41n] in (20). As for
the chance constraints in (18), the intervals Îi for i ∈ {1, 2, 3}
are given on the basis of the devision of Ii by n = 200,
e.g., Î1 = 1

200 [0, 38401n]. Furthermore, the violation rates
are given as ε̂1 = ε̂2 = 0.003 and ε̂3 = 0.35, which are the
same values as those for total power generation scheduling.

Next, for each τ ∈ {4, 9, 18}, we find the optimal schedule
of requests, denoted by v̂∗ in (22), as the solution of Prob-
lem 2. Then, it turns out that the optimization problem is
infeasible when τ = 4. To clarify the reason for this result,
we plot the chance constraints of Δx̂ in (18) corresponding
to the cases of τ ∈ {4, 9, 18} in Fig. 4, which are denoted by
the thin solid lines, the thin dotted lines and the thick dotted
lines, respectively. Note that the chance constraints on Δx̂
are equivalently translated into the deterministic constraints
on ΔX̂ in (33) as

−672

200
1nT̂ + sJ (Σ, ε̂2) ≤ ΔX̂ ≤ 672

200
1nT̂ − sJ (Σ, ε̂2)

where sJ (Σ̂, ε̂2) denotes a vector composed of si(Σ̂, ε̂2)
compatible with ΔX̂ . From this figure, we see that the upper
and lower constraints for τ = 4 overlap around 20 [h], i.e.,
the optimization is infeasible. That is, such a small degree of
freedom cannot allow the idiosyncratic behavior of consumers.
This result has some analogy to the conventional scheduling
of generators subject to physical constraints such as ramping
performance. In view of this, the use of signals with lower
temporal resolution is expected to be one reasonable approach
to such a scheduling problem with physical constraints.

For each γ ∈ {1, 0.05, 0.01} with τ = 9, the total
amounts of optimal utility energy consumption requests, i.e.,
[1τ1

T
nv̂

∗
t̂
]t̂∈T̂

, are plotted in Figs. 3(a)–(c) by the thick dotted
lines, where the temporal interpolation based on the zero-order
hold is applied to draw them. From these figures, we see
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Fig. 4. Chance constraints with τ ∈ {4, 9, 18}.

that the total amounts of resulting requests approximate the
optimal total power generation schedules, i.e., V ∗ denoted by
the thick solid lines. On the other hand, in the same manner,
the total amounts of resulting requests with τ = 18 are plotted
in Figs. 5(a)–(c). Comparing these figures with Figs. 3(a)–(c),
we see that the discrepancies between [1τ1

T
nv̂

∗
t̂
]t̂∈T̂

and V ∗

become larger than those with τ = 9, especially around the
peak times of V ∗. This difference is caused by the fact that the
temporal resolution of the utility energy consumption requests
is lower.

C. Management on the Day of Interest

In this subsection, we perform a simulation of the manage-
ment on the day of interest, according to the resulting sched-
ules of total power generation and utility energy consumption
requests, denoted by V ∗ and v̂∗, respectively. In the following,
we regard the temporal sequence of the actual demand, i.e., d
in (4), as one sample path of d.

Through the management of the power system, we investi-
gate what types of billing systems (or incentives) can make the
the utility energy consumption requests reasonable in the sense
that the total amount of actual utility power consumption is
made closer to the optimal schedule of total power generation.
Let

v = [vt]t∈T ∈ R
nT , Δx = [xt+1 − xt]t∈T ∈ R

nT

denote the utility power consumption and battery charging
power of the consumers, respectively, whose temporal se-
quences obey (4) with a sample path d. Then, we consider
the cases where an independent system operator determines a
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power bill charged to each consumer on the basis of either of
the following billing systems:

F (v;x) =

{
F1(v) +

1
100F2(v)

F1(v) +
1

100F3(x)
(40)

where

F1(v) :=

∥∥∥∥[ 1
τ

(
vτ t̂ + · · ·+ vτ(t̂+1)−1

)
− v̂∗

t̂

]
t̂∈T̂

∥∥∥∥
2

F2(v) :=
∥∥[vt+1 − vt]t∈T

∥∥2 ,
F3(x) :=

∥∥[Δxt+1 −Δxt]t∈T

∥∥2 .
The meanings of F1, F2 and F3 are explained as follows:
The function F1 penalizes the discrepancy between the actual
utility energy consumption and its request. The functions F2

and F3 penalize the changing rates of utility power con-
sumption and battery charging power, respectively. In this
simulation, we suppose that a home energy management
system implemented at each consumer’s home controls the
utility power consumption while minimizing the power bill
determined by either the first or second billing system in (40).
Note that penalization by F1 is made to be dominant in both
billing systems. Owing to this, the consumers follow the utility
energy consumption requests principally while suppressing
the changing rates of utility power consumption or battery
charging power collaterally.

In this formulation, we calculate the total amount of actual
utility power consumption, i.e., [1T

nvt]t∈T. When implement-
ing the first billing system in (40), we obtain the temporal
sequences of [1T

nvt]t∈T for each γ ∈ {1, 0.05, 0.01} as the
thin solid lines in Figs. 3(a)–(c) and Figs. 5(a)–(c), which
correspond to each τ ∈ {9, 18}, respectively. From these
results, we see that the sequences of [1T

nvt]t∈T with τ = 9
are close to those of V ∗ for all γ ∈ {1, 0.05, 0.01}. On
the other hand, in the case of τ = 18, the discrepancy is
small only for γ = 0.01, which corresponds to a situation
where the deterioration cost of the storage batteries becomes
considerably low. The negative values of [1T

nvt]t∈T can be
regarded as the negative deviation from a base level of the
total power generation or the total amount of power to be
consumed on the supplier side.

Furthermore, we obtain [1T
nvt]t∈T as the dashed-dotted lines

in Figs. 3(a)–(c) and Figs. 5(a)–(c) when implementing the
second billing system in (40), where a number of apparent
spikes in the total utility power consumption occur. These
spikes would originate from the fact that the effects of the
steep fluctuations in PV power generation and the idiosyncratic
behavior of consumers mostly appear as their utility power
consumption because consumers tend to avoid penalization
for their changing rate of battery charging power by F3 in
(40). From these results, we can conclude that the first billing
system in (40) is generally better than the second one in the
sense that the total amount of actual utility power consumption
is made to be closer to the optimal schedule of total power
generation.

Note that the discrepancy between the optimal schedule of
total power generation and the total amount of actual utility
power consumption, i.e., V ∗ − [1T

nvt]t∈T, can be regarded as

the regulating capacity of spinning reserve generators required
on the day of interest. From this numerical experiment, we
can confirm that the regulating capacity of spinning reserve
generators can be reduced by regulating the degree of freedom
for utility power consumption with the implementation of a
suitable billing (or incentive) system. A mathematical analysis
and synthesis of billing systems would be meaningful future
works to pursue.

V. CONCLUDING REMARKS

In this paper, we have proposed a novel framework to
maintain the balance among the amounts of power generation,
demand, and battery charging power under the supposition of
large-scale penetration of PV power generators and storage
batteries. The main features of our framework are summarized
as follows:

• A load dispatching center provides utility energy con-
sumption requests to individual consumers, which make
battery charge cycles of consumers contribute to the
supply-demand-storage balancing, via spatiotemporally
multiresolutional modeling of power systems.

• On the basis of the idea that the small dispersion of
quantities with regard to a large number of consumers is
imperceptible to the supplier side owing to spatiotemporal
aggregation, we determine the utility energy consumption
requests with low temporal resolution, which not only
ensures a degree of freedom for consumers with respect
to utility power consumption but also relatively reduces
the prediction uncertainty of PV power generation and
power consumption.

The performance of our framework has been demonstrated
via a numerical experiment, in which we have used the
data of actual power consumption and PV power generation
measured from houses in Ohta city, Japan. With this numerical
experiment, we have demonstrated a trade-off relation in which
the required regulating capacity of spinning reserve generators
can be reduced by regulating the degree of freedom for utility
power consumption, ensured for each consumer. On the other
hand, it also turns out that the idiosyncratic behavior of
consumers cannot be allowed if the degree of freedom is
too small in comparison with the magnitude of the prediction
uncertainty of power consumption and PV power generation.

The validity of our strategy for controlling the battery
charging power on the consumer side is reliant on the variety
of power consumption and PV power generation. In particular,
from the law of large numbers, we can expect that the total
amount of power consumption is close to its average over
all consumers, which is relatively easy to predict, as long
as the behavior of each consumer is sufficiently dispersed.
Conversely, one possible concern would be raised by the reso-
nant behavior of consumers due to synchronism of requesting
periods for utility energy consumption requests, which can
invoke unexpected peaks in the total power consumption. One
remedy for this is to shift the timing of the requesting periods
by dividing consumers into several groups. In fact, such a
time-shift of requesting periods has the potential to improve
the temporal resolution of the total number of utility energy
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Fig. 5. Power generation schedules, total amounts of utility energy consumption requests, and total amounts of utility power consumption with τ = 18.

consumption requests. The development of this time-shifting
strategy is one future work to pursue. In addition, further
consideration on detailed elements, e.g., the charge/discharge
efficiency of storage batteries and the non-normal distribution
of prediction errors, is meaningful to make our analysis
more realistic. Such generalization would require more careful
treatment for the switching of charge/discharge in translating
a stochastic optimization problem to its deterministic repre-
sentation. More specifically, in stochastic optimization, it is
not straightforward to formulate the switching of variables
for charge and discharge because a stochastic variable cannot
be confined to a specific domain, such as the nonnegative
orthant, in the almost sure sense. In view of this, the explicit
consideration on the charge/discharge efficiency of storage
batteries is a challenging task to work on.

LIST OF SYMBOLS

Preliminaries and numerical verification
t Time variable in original time scale
T Time length in original time scale
T Time set in original time scale
κ Unit of time step in original time scale
v Utility power consumption of consumers
d Net amount of demand of consumers
x Battery energy of consumers
d Predicted demand
Σ Covariance matrix for demand prediction
Scheduling of total power generation
V ∗ Optimal schedule of total power generation
V Total amount of power generation
D Total amount of predicted demand
X Total amount of battery energy
ΔX Total amount of battery charging power
εi Violation rate for chance constraint
Ii Interval to constrain corresponding variable
Scheduling of utility energy consumption request
t̂ Time variable in sparse time scale
T̂ Time length in sparse time scale
T̂ Time set in sparse time scale
τ Degree of temporal resolution
κ̂ Unit of time step in sparse time scale
v̂∗ Optimal schedule of utility energy consumption request
v̂ Request of utility energy consumption
d̂ Temporally aggregated predicted demand
x̂ Battery energy in sparse time scale

Δx̂ Battery charging power in sparse time scale
ε̂i Violation rate for chance constraint
Îi Interval to constraint corresponding variable
Generalized scheduling
ν Degree of spatial resolution
V̂ ∗ Optimal solution of generalized problem
V̂ Decision variable of generalized problem
D̂ Spatiotemporally aggregated predicted demand
X̂ Spatiotemporally aggregated battery energy
ΔX̂ Spatiotemporally aggregated battery charging power
D̂ Mean of spatiotemporally aggregated predicted demand
X̂ Mean of spatiotemporally aggregated battery energy
ΔX̂ Mean of spatiotemporally aggregated battery charging

power
δ̂i Violation rate for chance constraint

Notation of Mathematics We denote the set of real numbers
by R, the n-dimensional unit matrix by In, the n-dimensional
all-ones vector by 1n, the trace of a matrix M by tr(M),
the block diagonal matrix having n matrices M on its block
diagonal by diagn(M), the expectation of a stochastic variable
x by E[x], the probability of an event A by Pr(A), and the
normally distributed stochastic variable with mean m ∈ R

n

and variance Σ by x ∼ N (m,Σ). The error function is defined
by erf(x) := 2√

π

∫ x

0
e−t2dt and its inverse is denoted by

erf−1(x), satisfying erf−1(erf(x)) = x. Finally, we use the
notation of [xi]i∈{1,...,n} := [xT

1 , . . . , x
T
n]

T for vectors xi.
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