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Abstract— In this paper, we propose a design method of
average state Kalman filters for networked linear systems
with stochastic noises. The average state Kalman filter is a
low-dimensional estimator capturing the average behavior of
systems from a macroscopic point of view. In general, it is
nontrivial to find a set of states that captures the average
behavior of systems. To overcome this difficulty, using the notion
of clustering, we devise a systematic design procedure of average
state Kalman filters while determining states that capture the
average behavior of systems. Furthermore, deriving a tractable
representation of the estimation error system, we derive an
estimation error bound for the proposed method in a theoretical
way. The efficiency of the proposed method is shown by a power
system example in smart grid applications.

I. INTRODUCTION

In recent years, systems of interest to control communities
become more complex and larger in scale. For example,
in smart grid, we are required to maintain supply-demand
balance of power systems including more than one million
consumers by controlling a number of power plants [1],
[2]. In many cases, such large-scale complex systems are
spatially distributed and networked.

Towards establishing a framework for systematic design
of controllers for large-scale networked systems, in this
paper, we consider designing a state estimator for large-scale
networked systems based on input and output sequencial
responses. Since measurement outputs in real systems are
inevitably contaminated by noises, it is desirable to estimate
system states while suppressing the influence of noises on
estimated signals. One of well-known such estimators is
the Kalman filter [3] that estimates system states with the
minimization of the variance of estimation errors. However,
the Kalman filter is necessary to have a dimension com-
parable with a system of interest. Thus, the Kalman filter
for large-scale systems does not fully comply with practical
application from a viewpoint of computational costs for
implementation. In view of this, the development of low-
dimensional estimators is crucial to deal with large-scale
systems.

In [4], the authors propose a low-dimensional minimum
variance estimator that exactly cancels the effect of external
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input signals with respect to the state estimation error.
However, it is difficult to design low-dimensional estimators
based on this method in general because the state-space of
estimators must include states having even little influence on
state estimation.

As one method in which the notion of approximation
is introduced, in [5], [6], the authors propose the design
method of low-dimensional estimators by constructing a type
of Kalman filters for low-dimensional approximate models
of systems of interest. However, they do not clarify the
relation between the approximation error and the estimation
error for the designed low-dimensional estimator. Thus, the
construction of approximate models is rather heuristic.

In [7], we have proposed an average state observer captur-
ing behavior of large-scale systems from a macroscopic point
of view. We have clarified that the influence of external input
signals appears in the estimation error. Furthermore, we have
provided a design method to make the influence of inputs on
the estimation error small while determining a set of states
capturing the average behavior of systems to be estimated
on the basis of the clustered model reduction technique [8].

This paper continues upon the research of [7], and extends
the case to a type of Kalman filters. In particular, we propose
an average state Kalman filter, where measurement and
system noises are taken into explicit consideration. However,
the extenstion of average state observers developed in [7] is
not straightforward because the influence of noises appears
in the estimation error variance. In addition, as shown in [7],
the external input signal has the influence on the estimation
error, which results in a non-zero expected value of the
estimation error, i.e., unbiased estimation. In view of this,
we consider designing it by evaluating the sum of variance
and expectancy of estimation errors. Furthermore, we show
a theoretical estimation error bound with the provision of
a systematic design procedure. The proposed average state
Kalman filter is expected to be useful as a first step of
practical application, e.g., wave surge prediction in [9] and
power estimation in smart grid [10]. Finally, we show the
efficiency of our method through a power system example
of the IEEE 118 test system provided by [11].

This paper is organized as follows: In Section II-A, we
introduce the notion of clustering for networked systems
composed of multi-dimensional subsystems. This is the gen-
eralized notion in [8], [12] where the clustering technique is
proposed for interconnected one-dimensional subsystems and
second order subsystems, respectively. Then, we define an
average state Kalman filter as an operator to generate signals
compatible with states of clustered subsystems. In Section II-



B, using orthogonal projection [13], we formulate average
state filters described by linear stochastic discrete-time sys-
tems. Furthermore, deriving a tractable representation of the
estimation error system, we clarify that the estimation error
depends on not only the estimation error variance but also the
estimation error bias. Then, we formulate a design problem
of the average state Kalman filter. In Section III, on the basis
of the error analysis, we show a theoretical estimation error
bound with the provision of a systematic design procedure
for average state Kalman filters. In Section IV, we show
the efficiency of the proposed method through a numerical
example of a power system. Finally, concluding remarks are
provided in Section V.

Notation The following notation is used:
R set of real numbers
Z set of non-negative integers
In unit matrix of size n× n
eni the ith column of In
enI enI := [eni1 , . . . , e

n
im
] for i ∈

I := {i1, . . . , im}
Om×n (On) zero matrix of size m×n (n×n)
M ≺ On (M ≻ On) negative (positive) definiteness

of a symmetric matrix M ∈
Rn×n

M ⪯ On (M ⪰ On) negative (positive) semidefinite-
ness of a symmetric matrix
M ∈ Rn×n

tr(M) trace of a matrix M
1n 1n = [1, . . . , 1]T ∈ Rn

∥M∥F the Frobenius norm of a matrix
M

E [X] expectation of a stochastic vari-
able X

ρ(M) ρ(M) := maxi{|λi|} where λi

denotes the ith eigenvalue of M

For N = {1, . . . , N}, we denote the block-diagonal matrix
having matrices M1, . . . ,MN on its diagonal blocks by
dg(Mi)i∈N . In particular, if not confusing, we omit the
subscript of i ∈ N . Furthermore, the operator ⊗ denotes
Kronecker product. In addition, we denote Kronecker delta
as

δ(t) =

{
1 t = 0
0 t ̸= 0

, t ∈ Z.

The H∞-norm of a stable proper transfer matrix G and the
H2-norm of a stable strictly-proper transfer matrix G are
respectively defined by

∥G(z)∥H∞ := sup
ω∈R

∥G(ejω)∥,

∥G(z)∥H2 :=

(
1

2π

∫ 2π

0

tr(G(ejω)GT(e−jω))dω

) 1
2

where ∥ · ∥ denotes the induced 2-norm.

II. PROBLEM FORMULATION

A. Introducing Average State Kalman Filter

In this paper, we deal with discrete-time stochastic linear
systems composed of N subsystems. Let us consider a set of
κ-dimensional subsystems. For each i ∈ N := {1, . . . , N},
the dynamics of the ith subsystem is described by

Σi :{
xi(k + 1)=Aixi(k) +

∑N
j ̸=i Aijxj(k) +Biui(k) + wi(k)

yi(k)=Cixi(k) +Diui(k) + vi(k)
(1)

where Ai ∈ Rκ×κ, Bi ∈ Rκ×mi , Aij ∈ Rκ×κ, Ci ∈ Rpi×κ,
Di ∈ Rpi×mi , and yi ∈ Rpi is a measurement output and
ui ∈ Rmi is an input. In addition, the system noise wi ∈ Rκ

and the measurement noise vi ∈ Rpi are assumed to be
zero-mean white Gaussian and mutually uncorrelated with
variance Qi ⪰ Oκ and Ri ⪰ Opi , i.e.

E [wi(k)] = 0, E [vi(k)] = 0

E
[[

wi(k)
vi(k)

]
[wT

i (l), vTi (l)]
T

]
=

[
Qi

Ri

]
δ(k − l)(2)

for any k ∈ Z and l ∈ Z. Throughout this paper, we suppose
that xi ∈ Rκ represents the same physical quantities for all
i ∈ N . For example, as shown in Example 1, we deal with Σi

as a two-dimensional oscillator having the state variable of
xi := [θi ωi]

T where θi ∈ R and ωi ∈ R represent an angle
and angular velocity, respectively. In this paper, we consider
such subsystems having the same physical quantities among
N subsystems.

In addition, we use the notation of

n := Nκ, m :=
N∑
i=1

mi, p :=
N∑
i=1

pi

and

A:=

 A1 · · · A1N

...
. . .

...
AN1 · · · AN

 ∈ Rn×n, B := dg(Bi) ∈ Rn×m

C:= dg(Ci) ∈ Rp×n, D := dg(Di) ∈ Rp×m.

In this notation, we give the dynamics of the whole net-
worked system as

Σ :

{
x(k + 1) = Ax(k) +Bu(k) + w(k)

y(k) = Cx(k) +Du(k) + v(k)
(3)

where ◦ := [◦T1 , . . . , ◦TN ]T for each ◦ ∈ {x, u, y, w, v}. For
this system, we consider introducing the notion of clustering
as follows:

Definition 1: Let Σ in (3) be given. The family of an index
set {I[l]}l∈L for L := {1, . . . , L} is called a cluster set,
whose element is referred to as a cluster, if each element
I[l] is a disjoint subset of N and it satisfies∪

l∈L

I[l] = N .



[
θi(k + 1)
ωi(k + 1)

]
=

[
1 τ

1− Diτ
Mi

] [
θi(k)
ωi(k)

]
−

[
0
τ
Mi

]∑
j ̸=i

yij(θi(k)− θj(k)) +

[
0
τ
Mi

]
(ui(k) + wi(k)) (6)
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Fig. 1. Illustrative example: Networked oscillators model having five subsystems and their input responses. Angular velocities (in the middle figure) and
angles (in the rightmost figure) of individual subsystems are depicted by the lines with markers ◦, □, ♢, ⋆ and △ for i in the ascending order.

Then, an embedding matrix compatible with {I[l]}l∈L is
defined by

W :=

(
Π dg

(
1

√
n1

1n1 , . . . ,
1

√
nL

1nL

))
⊗ Iκ ∈ Rn×Lκ

(4)
where nl is the cardinality of I[l] and the permutation matrix

Π := [eNI[1]
, . . . , eNI[L]

] ∈ RN×N . (5)
In this paper, we consider estimating average behavior of

Σ. To illustrate this purpose, let us consider the following
example:

Example 1: Let Σ in (3) be composed of five subsystems,
i.e., N = 5, and each subsystem Σi be a discrete-time
networked oscillators model in (6) with a sampling interval
τ = 0.01, unit mass and a unit damping coefficient, i.e.,
Mi = Di = 1. The interconnection structure is shown in
the leftmost in Fig. 1 where the coefficient between Σi and
Σj denotes yij = yji in (6), e.g. y12 = y21 = 0.3. Let
x(0) = 0, Q1 = 0.5 and u1(t) = sin(50t), and Qi = 0 and
ui(t) = 0 for i ∈ {2, . . . , 5}. In Fig. 1, we plot the resultant
trajectories of ωi and θi of individual subsystems by green,
yellow, red, purple and blue lines for i in the ascending order.
From Fig. 1, we can see that x2(t) coincides with x5(t) and
x3(t) coincides with x4(t). This implies that two bundles
of {xi}i∈{2,5} and {xi}i∈{3,4} can be represented by four-
dimensional signal. In other words, by taking into account
x1 ∈ R2, estimating a signal f(k) ∈ R6 to make the norm
of

∆ := x(k)−Wf(k) (7)

small in a suitable sense where W is the embedding matrix
in (4) with cluster sets

I[1] = {1}, I[2] = {2, 5}, I[3] = {3, 4},

we can capture average behavior of Σ instead of estimating
all of 10 trajectories of x.

In view of this, we define a filter to estimate average
behavior of Σ as follows: Let U := {u : Z → Rm},
Y := {y : Z → Rp} and F := {f : Z → RLκ}. Define
the average state Kalman filter F as

F : U× Y → F (8)

to make the magnitude of estimation error ∆ in (7) small
in a suitable sense. Owing to the block-diagonal structure of
W , we can regard f as an average state of x.

In general, we do not know a cluster sets capturing average
behavior of Σ in advance. In view of this, we suppose
that cluster sets {I[l]}l∈L is not given in advance. In what
follows, we give a criterion to evaluate the magnitude of the
estimation error ∆, and devise a systematic method to design
F as well as determining cluster sets {I[l]}l∈L. Note that a
method to achieve usual averaging, i.e., normalized by using
nl in (4) but not

√
nl, is described in Remark 2.

B. Design Problem of Average State Kalman Filters

In this section, we formulate a problem to design average
state filters F in (8). For simplicity, we focus on time-
invariant filters and deal with stable Σ in (3), i.e., ρ(A) < 1.

Note that the embedding matrix W in (4) satisfies
WTW = ILκ and an output signal f in (8) estimates x
in (3) by expanding by W . On the basis of the notion of
orthogonal projection [13], as an instance of F to generate
such a signal f , let us consider a linear filter described by

F :x̂(k + 1) = WTAWx̂(k) +WTBu(k) +H(y(k)− ŷ(k))
ŷ(k) = CWx̂(k) +Du(k)
f(k) = x̂(k)

(9)

with x̂(0) = 0 where n̂ := Lκ and H ∈ Rn̂×p is a filter
gain. Without loss of generality, we assume that n̂ ≤ n. To
analyze the estimation error ∆ in (7), we give the following
lemma:

Lemma 1: Let Σ in (3) be given. Suppose that a cluster
set {I[l]}l∈L is given, and an embedding matrix W is defined
as in Definition 1. Consider F in (9). Then

EW :

{
ξ(k + 1) = Aξ(k) + Bu(k) + η(k)

∆(k) = Wξ(k)
(10)

with ξ(0) = [xT(0)W, xT(0)]T where

η(k) :=

[
WTw(k)−Hv(k)

w(k)

]
and

A =

[
WTAW −HCW (WTA−HC)(In −WWT)

On×n̂ A

]
B =

[
On̂×m

B

]
, W =

[
W In −WWT

]
.

Proof: Omit due to page limitation.



In Lemma 1, it should be emphasized that ∆ in (7)
depends on not only x(0) but also u(k) as long as WWT ̸=
In. Thus, even if a sufficiently long time is elapsed, the
expected value of ∆ is biased, i.e.,

lim
k→∞

E [∆(k)] ̸= 0

unless u is applied to Σ and F constantly. Although usual
n-dimensional Kalman filter in [3] makes magnitude of the
variance of ∆ small, in our case, we should take into account
not only the variance of ∆ but also the bias of ∆. Therefore,
in this paper, we consider evaluating

lim
k→∞

E [∥∆(k)∥] (11)

for designing F . Note that (11) coincides with the sum of
the norm of the bias of ∆ and trace of the variance of ∆
at the infinite time. To analyze the estimation error ∆ in a
theoretical way, we evaluate (11) for u of a white Gaussian
process with zero-mean and a variance Im, i.e., for any k ∈ Z
and l ∈ Z,

E[u(k)] = 0, E[u(k)uT(l)] = δ(k − l)Im. (12)

In this setting, we formulate the problem to design average
state filters F as follows:

Problem 1: For a given Σ in (3), consider a cluster set
{I[l]}l∈L in Definition 1. Consider F in (9) and ∆ in (7).
For a given ϵ ≥ 0, find {I[l]}l∈L and F such that

lim
k→∞

E [∥∆(k)∥] ≤ ϵ (13)

for a white Gaussian process {u(k)} satisfying (12) and all
x(0) ∈ Rn.

III. DESIGN OF AVERAGE STATE KALMAN FILTERS

A. A Road Map for Systematic Design

In the previous subsection, we have formulated the prob-
lem to design an average state Kalman filter. Problem 1 is
formulated as a problem to find W in (4) and a filter gain
H in (9) satisfying (13). Note that the left-hand side in (13)
is independent from x(0). Taking the z-transformation of ∆
in (7), we have

∆(z) = ΞW,H(z)XW (z;u,w) +NW,H(z;w, v) (14)

where

ΞW,H(z) := W (zIn̂ −AΞ)
−1BΞ +W (15)

with

AΞ := WTAW −HCW, BΞ := (WTA−HC)W (16)

and

XW (z;u,w) := W
T
(zIn −A)−1[Bu(z) + w(z)]

NW,H(z;w, v) := W (zIn̂ −AΞ)
−1

[
WTw(z) −Hv(z)

]
(17)

with W ∈ R(n−n̂)×n satisfying

WWT +WW
T
= In. (18)

In this notation, it follows that

lim
k→∞

E[∥∆(k)∥] ≤ ∥ΞW,H(z)XW (z)∥H2 + ∥NW,H(z)∥H2 .

(19)
Noting that ΞW,H(z)XW (z) = 0 for W = In, we
can see that (19) coincides with the standard evaluation
value of the Kalman filter. Furthermore, it follows that
∥ΞW,H(z)XW (z)∥H2 ̸= 0 unless WWT ̸= In because
the average state Kalman filter cannot exactly predict the
dynamical behavior of systems for u and w. In this sense,
we can see (19) as the generalized evaluation taking into
account the estimation error arising from prediction errors.

In what follows, we consider making the first and sec-
ond term in the right-hand side of (19) sufficiently small.
However, it should be noted that the simultaneous design
of W and H is difficult because ΞW,H and NW,H contain
parameters W and H in a nonlinear fashion. To overcome
this difficulty, we use the following facts:

• XW depends on W , but not H .
• We have

∥ΞW,H(z)XW (z)∥H2 ≤ β∥XW (z)∥H2 (20)

where β := ∥ΞW,H(z)∥H∞ .
• The parameters W and H appear in ΞW,H and NW,H .

On the basis of these facts, we first determine W to make
∥XW (z)∥H2 small. More specifically, let Φ ⪰ On be given
such that

ATΦA− Φ+BBT +Q = 0. (21)

Furthermore, for j ∈ {1, . . . , κ}, define

Φ
(j)
1
2

:= (enK(j))
TΦ 1

2
∈ RN×n (22)

where Φ 1
2
⪰ On is a Cholesky factor of Φ, i.e., Φ = Φ 1

2
ΦT

1
2

and K(j) ⊆ {1, . . . , n} is the set of indices to represent the
jth physical quantity of xi for all i ∈ N , i.e., K(j) is given
such that

[x1,j , . . . , xN,j ]
T = (enK(j))

Tx (23)

where xi,j denotes the jth element of states of the ith
subsystem. In Example 1, K(1) = {1, 3, 5, 7, 9} and K(2) =
{2, 4, 6, 8, 10}. One approach to construct W in (4) and W
satisfying (18) while achieving small ∥XW (z)∥H2 is to take

W = Iκ ⊗ (Πdg(wl)l∈L) (24)

with Π in (5) where wl ∈ Rnl×(nl−1) is given such that
[wl,1nl

] is unitary. Then, (18) holds for any wl. Furthermore,

∥XW (z)∥2H2
= ∥WT

[(Φ
(1)
1
2

)T, . . . , (Φ
(κ)
1
2

)T]T∥2F

=
κ∑

i=1

∥dg(wT
l )l∈LΠ

TΦ
(i)
1
2

∥2F

holds. Hence, we can construct {I[l]}l∈L if there exists a
family of {wl}l∈L making ∥XW (z)∥H2 small. On the basis
of this analysis, we have the following lemma:



Lemma 2: Consider Problem 1. Let Φ(j)
1
2

in (22) be given

for j ∈ {1, . . . , κ}. If there exist ϕ(j)
[l] ∈ R1×n and {I[l]}l∈L

such that

max
j∈{1,...,κ}

∥∥∥∥(eNI[l]
)TΦ

(j)
1
2

− 1
√
nl

1nl
ϕ
(j)
[l]

∥∥∥∥2
F

≤ nlσ
2, l ∈ L

(25)
for a given σ ≥ 0, then

∥XW (z)∥H2 ≤ ασ (26)

where α :=
√∑L

l κnl(nl − 1).
Proof: Omit due to page limitation.

In this lemma, a design parameter σ represents a coarse-
ness parameter for cluster construction. Supposing that
{I[l]}l∈L is given satisfying the assumtion in Lemma 2, we
consider determining H to make the norm of NW,H in (17)
small. To this end, we give the following theorem.

Theorem 1: Consider Problem 1. Suppose that there exist
ϕ
(j)
[l] ∈ R1×n and {I[l]}l∈L such that (25). Furthermore, if

there exist

γ > 0, X ≻ On̂, Y ∈ Rn̂×p, Z ≻ On̂

such thatX (XWTAW − Y CW )
[
XWTQ 1

2
−Y R 1

2

]
∗ X 0
∗ ∗ In+p

≻O2n̂+n+p[
X In̂
∗ Z

]
⪰ O2n̂, tr (Z) < γ2

(27)
where W is given in (4) and Q 1

2
and R 1

2
are Cholesky factors

of Q and R, respectively. Then, F in (9) with

H = X−1Y (28)

satisfies
lim
k→∞

E [∥∆(k)∥] < αβσ + γ (29)

with σ in (25), α in (26) and β in (20) for a white Gaussian
process {u(k)} satisfying (12) and all x(0) ∈ Rn.

Proof: Omit due to page limitation.
Theorem 1 provides an explicit bound of the estimation

error by the average state Kalman filter. Note that if σ = 0,
i.e., W = In, then F in (9) turns out to be the Kalman filter
[3].

Remark 1: In Theorem 1, β in the right-hand side in (29)
is calculated after designing H . To construct H having a
priori error bound of ∥ΞW,H(z)∥H∞ , it suffices to add an
equivalent LMI of ∥ΞW,H(z)∥H∞ ≤ β for a given β > 0 to
(27).

B. Designing Algorithm of Average State Kalman Filters

In this subsection, we provide an algorithm to design the
average state filter F in (9) for a given design paramter ϵ in
Problem 1 as follows:

Suppose that a design parameter σ in (25) is given and a
set of clusters {I[1], . . . , I[l]} is already constructed. Let

S := {1, . . . , n}\{I[1], . . . , I[l]}.

Next, we first choose an index s ∈ S . Subsequently, construct
a new cluster I[l+1] such that

I[l+1] =

{
i ∈ S\{s}| max

j∈{1,...,κ}

∥∥∥ϕ(j)
i − ϕ(j)

s

∥∥∥ ≤ σ

}
(30)

where ϕ
(j)
i ∈ R1×n denotes the ith row vector of Φ

(j)
1
2

.
We can straightforwardly verify that this newly constructed
cluster I[l+1] satisfies (25).

In this setting, for stable Σ in (3), we summarize the design
procedure of an n̂-dimensional average state Kalman filter as
follows:

a) Give ϵ ≥ 0 and σ ≥ 0.
b) Find {I[l]}l∈L by the above procedure.
c) Find X ≻ On̂, Y ∈ Rn̂×p, Z ≻ On̂ and minimal

γ > 0 satisfying (27).
d) If no solutions exist or ϵ < ∥∆(z)∥H2 , take smaller σ,

and go back to b).
e) Construct an average state Kalman filter F in (9) with

H given by (28).

Finally, it should be noted that since the number of
decision variables of LMI given by (27) is n̂2+(p−1)n̂+1,
this design procedure is computationally tractable if n̂ is
small.

Remark 2: The average state f given by F in (9) with
an embedding matrix W in (4) implies an average state
normalized by

√
nl. Alternatively, if we define

f = Sx̂, S := diag

(
1

√
n1

, . . . ,
1

√
nL

)
⊗ Iκ ∈ RLκ×Lκ

(31)
then, the norm of estimation error ∆ in (7) turns out to be

∥∆∥ =

√∑
l∈L

∑
i∈I[l]

∥xi − fl∥2 (32)

where fl ∈ Rκ such that [fT
1 , . . . , f

T
L ]

T = f . Thus, signal f
generated by the average state filter with (31) coincides with
the average state of x in the usual sense.

IV. NUMERICAL EXAMPLE

In this section, we show the efficiency of the proposed
average state filter through a numerical example. We deal
with the IEEE 118 power test system provided by [11].
For simplicity, we replace the synchronous condensers in
the original test system with generators. In addition, we
regard each generator as each subsystem. The number of
subsystems is 54, i.e., N = 54, which yields n = 108. For
i ∈ N := {1, . . . , 54}, the dynamics of the ith generator is
given in (6) represented by networked oscillators provided by
[14]. In addition, the admittance yij is calculated by using
MATPOWER in [11].

Let the input u be applied to the first to third generators,
i.e.,

B =

[
dg( τ

Mi
e21)i∈{1,2,3}
0102×3

]
∈ R108×3.



Fig. 2. Network structure of the IEEE 118 test
system and resultant cluster sets for L = 12.

Fig. 3. Clustered network structure with
resultant {I[l]}l∈{1,...,12}.
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Fig. 4. Trajectories of angular velocities of x and f .

In addition, we take the measurement output y as the states
of the first to eighth generators, i.e.,

C =
[
I16 016×92

]
∈ R16×108.

Furthermore, we take the variance of wi and vi as Qi =
dg(0.5, 0) for i ∈ {1, 4}, and Qi = 0 for i ∈ N\{1, 4}
and R = 0.001× I12, respectively. Let the sampling interval
τ = 0.001, Di = 7 for i ∈ N , and Mi = 0.1 for i ∈ J ,
where J denotes the set of indices of generators that connect
to the first to third generators, and Mi = 1.2 for i ∈ N\J .

We design an average state Kalman filter F in (9) by the
procedure shown in Section III-B for a given value of σ in
(25) such that L = 12, which yields n̂ = 24. First, we show
the resultant cluster sets {I[l]}l∈L in Definition 1 and network
structure of the power system in Fig. 2 where individual
circles denote generators. In addition, in Fig. 3, we show
the resultant network structure composed of the clustered
subsystems. Furthermore, taking x(0) = 0 and random input
signals u containing multiple frequency waves, in Fig. 4,
we plot the trajectories of angular velocities of subsystems
compatible with {I[l]}l∈{1,2,3} and those of average states f
compatible with angular velocities. The indication in Fig. 4 is
as follows: the trajectories of x are depicted as red, blue and
green lines and those of f are depicted as red, blue and green
dotted lines with circles. We can see from this figure that
each trajectory of f is around the center of colored trajectory
sets. Moreover, defining the resultant average behavior as

ξl(k) :=
∑
i∈I[l]

1

nl
xi(k), l ∈ L,

we calculate the resultant estimation error of ξl by the
average state fl in (32) normalized by the norm of ξl, i.e.,∑

l∈L ∥ξl(k) − fl(k)∥/
∑

l∈L ∥ξl∥ = 0.05. These results
imply that the proposed average state Kalman filter can
estimate the average behavior of networked systems.

V. CONCLUSION

In this paper, we have proposed a design method of
average state Kalman filters, which are low-dimensional esti-
mators capturing average behavior of systems, for networked
stochastic linear systems. Deriving a tractable representation
of the error system. We have shown a theoretical error bound
and a systematic design procedure of average state Kalman
filters. The efficiency of the proposed method has been
shown by using a power system example of the IEEE 118 bus

test system. In this paper, we have dealt with time-invariant
average state Kalman filters. The extention to time-variant
filters is currently under investigation as well as practical
application, e.g., wave surge prediction in [9].
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